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Introduction

The goal of this short note is to present a new model of dependent type theory due to Christian Sattler.
This is a obtained from (a variation of) the Dedekind model, that will be called the Poset model, by
localising at a left exact modality. It is a model of univalence and higher inductive types, and seems to
represent homotopy types in a satisfactory and constructive way.

1 The Poset model of type theory

We first present a variation of the Dedekind model of type theory.
Instead of working with free finite non degenerate distributive lattices like in the CCHM model, we

work with finitely presented non degenerate distributive lattices.
By duality between finite posets and finite distributive lattices, this is equivalent to the presheaf

model on the base category � of finite non empty posets.
We will write Y o(X), or simply X for the presheaf represented by an object X.
This category contains as a full subcategory the category ∆ of finite non empty linear posets, and

the category ∆+ with the same objects, where we restrict the maps to strictly monotone maps.
We write [n] the linear poset with n+ 1 elements.
We consider the model based on the following cofibration classifier Φ(X), and interval Y o([1]). An

element of Φ(X) is given by a finite collection Yl of nonempty subsets of X (if the family is empty we get
the empty sieve) and is the collection of maps of codomain X such that its image is contained in some
Yl.

We start by the presheaf model of type theory P (�), with base category �. A context Γ is interpreted
by a presheaf over � and a type over Γ by a presheaf on the category of elements of Γ. We write Type(Γ)
the collection of types over Γ. Finally Elem(Γ, A) is the collection of global sections of the presheaf A.

If A in Type(Γ) and ρ in Γ(X), we may write simply Aρ for A(X, ρ).
If A is in Type(Γ) a composition operation for A is an operation cA which takes as argument ρ in

Γ(X × [1]) and Yl nonempty subsets of X and u0 in Aρ(X × 0) (the lower lid of the open box), and ul
in Aρ(Yl × [1]) (the cylinder of the box) and build an element cA(X, ρ, u0, ul) in Aρ(X × 1), element
compatible with each ul (the upper lid of the box). Furthermore this operation has to be unifom: we
should have cA(X, ρ, u0, ul)f = cA(Y, ρ(f × [1]), u0f, ul(fl × [1])) if f : Y → X, with fl : f−1(Yl) → Yl
induced by f . (There is then a similar operation swapping 0 and 1.)

We let comp(Γ, A) be the set of composition operations for A.
If X is linearly ordered with |X| > 1, any element x0 in X defines a horn, which is the family of

all proper subsets Yl of X containing x0. We say that A has horn filling if there is an operation hA(ul)
in A(X, ρ) extending each compatible family of elements ul in Aρ(Yl). We don’t require any uniformity
condition.

We let horn(Γ, A) be the set of horn filling operations for A.
We’ve shown in previous works that we get a model of dependent type theory with univalence,

interpreting contexts Γ by presheaves on � and types on Γ as presheaves on the category of elements of
Γ with a composition operation.

Lemma 1.1. If A has a composition, it has horn filling. More precisely we have an operation
comp(Γ, A)→ horn(Γ, A) natural in Γ.
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Proof. Let X be linearly ordered with |X| > 1 and x0 be an element of X. We assume given compatible
elements u(Y ) in Aρ(Y ) for each subset Y of X containing x0. If x0 is not the top element of X0

we can consider Z0 the set of x in X such that x 6 x0 and we have u(Z0) in Aρ(Z0). We have a
map h : X × 0 → Z0 by h(x, 0) = x if x 6 x0 and h(x, 0) = x0 if x0 < x. We build a a map
g(Y ) : Y × [1] → Y by gl(x, 0) = h(x, 0) and gl(x, 1) = x. We define then v(Y ) = u(Y )g(Y ) in Aρ(Y )p
and v(X × 0) = u(Z0)h. By composition, we get an element v(X × 1) compatible with each v(Y ) which
the horn filling of u(Y ).

There is a similar operation if x0 is not the least element of X.

We can think of [n] × [1] as a prism. We have n + 1 subsets linearly ordered with n + 2 elements.
For instance, for n = 2, we have the subsets (0, 0), (1, 0), (2, 0), (2, 1) and (0, 0), (1, 0), (1, 1), (2, 1) and
(0, 0), (0, 1), (1, 1), (2, 1).

A difference between P (∆) and P (�) is that in P (∆) these subsets define a covering of [n]× [1] while
they do not do it in P (�) for n > 0. (For n = 1, in P (�), a square is not the union of two triangles.)

2 The model over � is not equivalent to spaces

We consider Θ = Y o(0, 1). It can be checked that the diagonal map Θ → ΘI is an isomorphism. It
follows that any dependent type over Θ has a composition structure.

We have two global points 1→ Θ.
In particular we can consider P in Type(Θ) such that Pρ is the singleton {0} if ρ : X → {0, 1} is

constant, and is empty otherwise. This defines a family of strict propositions.
For any global point σ : 1→ P , we have that Pσ is the unit type.
However Elem(Θ, P ) is empty since for id : {0, 1} → {0, 1} we have that P id is empty.

This shows that the associated model structure on P (�) cannot be equivalent to the one on spaces.

3 Lex operation

We’ve defined in [CRS] the notion of lex operation. It can be defined from a pointed pseudomorphism of
a given model. For the present model, this is the monad induced from the inclusion functor ∆+ → �.
Concretely, if F is a presheaf on �, we define DF (X) to be the set of functions u(f), for f : [n] → X,
such that u(f)g = u(fg) if g : [m]→ [n] is strictly monotone.

This induces a lex operation [CRS] on types, by defining DA in Type(Γ) for A in Type(Γ) in the
following way. An element u of DAρ is a function u(f) in A([n], ρf) such that u(f)g = u(fg) if
g : [m]→ [n] strictly monotone.

Lemma 3.1. If A has a horn filling operation then DA has a composition operation. More precisely,
we have an operation horn(Γ, A)→ comp(Γ, DA) natural in Γ.

Proof. Let ρ be an element in Γ(X × [1]). Let u0 be an element in DAρ(X × 0), Yl subsets of X and ul
an element in DAρ(Yl × [1]) all compatible. (This defines an open box with a bottom lid.) We have to
build u1 in DAρ(X × 1) compatible with all ul. (This is the upper lid of the box.)

For this we define u1(f) for f : [n]→ X by induction on n.
We strengthen the induction hypothesis by defining u(P ) in Aρ(f × [1])(P ) for each linear nonempty

subsets P ⊆ [n]× [1] in a compatible way.
We do the example n = 2.
If the image of f is a subset of some Yl there is no choice and ul gives u(P ).
Otherwise, we proceed as follows.
We first define u((0, 0), (1, 0), (2, 0), (2, 1)). By induction we have u((0, 0), (2, 0), (2, 1)) and

u((1, 0), (2, 0), (2, 1)) and we are given u((0, 0), (1, 0), (2, 0)), which is u0(f). By Horn filling, we have
u((0, 0), (1, 0), (2, 0), (2, 1)).

Next we define u((0, 0), (1, 0), (1, 1), (2, 1)). We have by the first step u((0, 0), (1, 0), (2, 1)) and
by induction we have u((0, 0), (1, 0), (1, 1)) and u((1, 0), (1, 1), (2, 1)). Hence by Horn filling, we have
u((0, 0), (1, 0), (1, 1), (2, 1)).
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Finally, we define u((0, 0), (0, 1), (1, 1), (2, 1)). We have by the second step u((0, 0), (1, 1), (2, 1)) and
by induction we have u((0, 0), (0, 1), (1, 1)) and u((0, 0), (0, 1), (2, 1)). Hence by Horn filling, we have
u((0, 0), (0, 1), (1, 1), (2, 1)).

In particular, we have u((0, 1), (1, 1), (2, 1)) which is u1(f).
This composition operation is uniform in X.

We have a map η : A → DA which is defined by (ηa)(f) = af if ρ in Γ(X) and a in A(X, ρ) and
f : [n]→ X. We then have (ηa)(f)g = (ηa)(fg) if g : [m]→ [n] not necessarily strictly monotone.

If α : A→ B we define Dα : DA→ DB by (Dαu)(f) = αu(f) for u in DA(X, ρ).

4 Left exact modality

The work [CRS] gives a sufficient condition for a lex operation to be a left exact modality.
It is enough to have a path between ηDA and DηA, of type DA → D2A, and that both maps are

equivalences.
An element v in D2A(X, ρ) is a family v(f)(g) in A([m], ρfg) indexed by maps f : [n] → X and

g : [m] → [n], such that v(f)(gh) = v(fg)(h) if f : [n] → X and g : [m] → [n] strictly motonotone
and h : [l] → [m] and v(f)(g)h = v(f)(gh) if f : [n] → X and g : [m] → [n] and h : [l] → [m] strictly
motonotone.

We define a multiplication map µ : D2A→ DA by (µv)(f) = v(f)(id).
If α : A→ B we have Dα ◦ µ = µ ◦D2α : D2A→ DB strictly. Indeed

((Dα ◦ µ)v)(f) = (Dα(µv))(f) = α(µv)(f) = αv(f)(id)

and
(µ(D2αv))(f) = (D2αv)(f)(id) = (Dαv(f))(id) = αv(f)(id)

We have (µ ◦ ηDA)u = (µ ◦DηA)u = u with a strict equality if u in DA(X, ρ).
If I and J are linear order (maybe empty), we write I + J the linear order where all elements of I

are < all elements of J .

Lemma 4.1. There is a path between ηDA and DηA. Furthermore this path can be built without using
the composition for A.

Proof. For u in DA(X, ρ) we compute

(ηDAu)(f)(g) = uf(g) = u(fg)

and
(DηAu)(f)(g) = (ηAu(f))(g) = u(f)g

We build an element v in D2A(X×[1], ρp) with p : X×[1]→ X, connecting ηDAu and DηAu. For this
we consider (f, h) : [n]→ X × [1] and g : [m]→ [n]. We have h : [n]→ [1], which gives a decomposition
[n] = A0 + A1. This gives a corresponding decomposition [m] = B0 + B1 with maps gi : Bi → Ai. We
can then define v(f, h)(g) = u(f(g0 +A1))(B0 + g1).

Corollary 4.1. µ is the homotopy inverse of DηA.

Proof. We have seen that µ ◦DηA = id strictly.
In the other direction, we have DηA ◦µ = µ ◦D2ηA strictly and by the previous Lemma, this is path

equal to µ ◦DηDA = id.

It follows from this that DηA is an equivalence. Hence by [CRS], D defines a left exact modality.
We thus get [CRS] a new model of univalent type theory as the model of D-modal types.
Being a lex operation, it satisfies strictness conditions, for instance it is a strict monad. Using these

strictness conditions, [CRS] explains how to interpret data types and higher inductive types in this model.
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5 Some properties of the localised model

The model of D-modal types satisfies countable choice and Whitehead’s principle.
One key property of this new model is the following.

Proposition 5.1. Let A be an element of Type(Γ) which is a fibrant and is a proposition. If for any
global point σ : 1→ Γ we have that Aσ is contractible then DA is contractible.

We can use this model to define a Quillen model structure on the presheaf category P (�). The
cofibrations are the maps classified by Φ. The fibrations are the maps isomorphic to projections Γ.A→ Γ
where A is a (fibrant) type on Γ.

If C is a category, we can define N(C) by N(C)(X) set of functors X → C. It should then be possible
to prove Quillen theorem A for this model structure: if F : C → D is such that each comma category
d ↓ F is contractible then N(F ) is an equivalence.

More generally, we expect that we can develop abstract homotopy theory constructively, using the
language of type theory.
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