The Univalence Principle

Benedikt Ahrens

j.w.w. Paige R North, Michael Shulman, Dimitris Tsementzis

Interactions of Proof Assistants and Mathematics International Summer School, Regensburg, Germany 2023-09-26

Contents of this talk

What this talk is about

- I. Quest for an equivalence-invariant foundation of mathematics
- 2. Overview: how can Voevodsky's Univalent Foundations (UF) be equivalence-invariant?
- 3. Our work on proving that UF are equivalence-invariant

What this talk is not about

Precise definitions and proofs

Contents of this talk

What this talk is about

- I. Quest for an equivalence-invariant foundation of mathematics
- 2. Overview: how can Voevodsky's Univalent Foundations (UF) be equivalence-invariant?
- 3. Our work on proving that UF are equivalence-invariant

What this talk is not about

Precise definitions and proofs

For precise mathematical results I refer to our book:

The Univalence Principle (arXiv:2102.06275)

Overview

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- A Example: Univalence Principle for monoids, manually
- 5 Example: Univalence Principle for monoids, in our framework
- **6** Two Notions of Signature
- 7 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Outline

T Motivation for Univalent Foundations

- 2 Reminder: Univalent Foundations
- **3** The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Indiscernibility of identicals

Indiscernibility of identicals

$$x = y \rightarrow \forall P(P(x) \leftrightarrow P(y))$$

- Reasoning in logic is invariant under equality
- In mathematics, reasoning should be invariant under weaker notion of sameness!

Equivalence principle

Reasoning in mathematics should be **invariant under** the appropriate notion of **sameness**.

Invariance under sameness

Notion of sameness depends on the objects under consideration:

An equivalence principle for group theorists

 $G \cong H \to \forall$ group-theoretic properties $P, (P(G) \leftrightarrow P(H))$

An equivalence principle for category theorists

 $A \simeq B \rightarrow \forall$ category-theoretic properties $P, (P(A) \leftrightarrow P(B))$

Invariance under sameness

Notion of sameness depends on the objects under consideration:

An equivalence principle for group theorists

 $G \cong H \to \forall$ group-theoretic properties $P, (P(G) \leftrightarrow P(H))$

An equivalence principle for category theorists

 $A \simeq B \rightarrow \forall$ category-theoretic properties $P, (P(A) \leftrightarrow P(B))$

What are "structural" properties?

Violating the equivalence principle

What is **not** a structural property?

Exercise

Find a statement about categories that is not invariant under the equivalence of categories

Violating the equivalence principle

What is not a structural property?

Exercise

Find a statement about categories that is not invariant under the equivalence of categories

A solution

"The category ${\mathscr C}$ has exactly one object."

Violating the equivalence principle

What is not a structural property?

Exercise

Find a statement about categories that is not invariant under the equivalence of categories

A solution

"The category ${\mathscr C}$ has exactly one object."

Can we rule out such "non-structural" statements?

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics: The basic character of the Principle of Isomorphism is that of a **constraint on the language** of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense.

A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics: The basic character of the Principle of Isomorphism is that of a **constraint on the language** of Abstract Mathematics; a welcome one, since it provides for the separation of sense from nonsense.

Makkai's FOLDS (First Order Logic with Dependent Sorts)

A language for categorical structures in which only invariant properties can be expressed

- FOLDS is not a foundation of mathematics
- Invariance only for properties, not for constructions

Univalent Foundations and the Univalence Principle

Voevodsky's goals

- Univalent Foundations as an "invariant language"
- Invariance not only for statements, but also for constructions: any construction on objects in UF can be transported along equivalences of objects

Essential ingredients for Univalent Foundations

- Martin-Löf identity type
- Voevodsky's univalence axiom

Univalent Foundations and the Univalence Principle

Voevodsky's goals

- Univalent Foundations as an "invariant language"
- Invariance not only for statements, but also for constructions: any construction on objects in UF can be transported along equivalences of objects

Essential ingredients for Univalent Foundations

- Martin-Löf identity type
- Voevodsky's univalence axiom

In the rest of this talk

How is reasoning in Univalent Foundations invariant under equivalence?

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- 🕝 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Overview of types in type theory

Type former	Notation	(special case)	canonical term
Inhabitant	a : A		
Dependent type	$x:A \vdash B(x)$		
Sigma type	$\sum_{x:A} B(x)$	$A \times B$	(<i>a</i> , <i>b</i>)
Product type	$\prod_{x:A} B(x)$	$A \rightarrow B$	$\lambda(x:A).b$
Coproduct type	A + B		inl(a), inr(b)
Identity type	a = b		$\operatorname{refl}(a): a = a$
Universe	U		
Base types	Nat, Bool, 1, 0		

Identity vs equality

Inhabitants of x = y behave like equality in many ways

• $\operatorname{refl}(x): x = x$

•
$$\operatorname{sym}(x,y): x = y \to y = x$$

• trans(x, y, z): $x = y \times y = z \rightarrow x = z$

Transport

transport :
$$x = y \rightarrow \prod_{B:A \rightarrow \mathcal{U}} (B(x) \simeq B(y))$$

Inhabitants of x = y behave **un**like equality

- Can iterate identity type
- Cannot show that any two identities are identical

The important features of univalent foundations

Homotopy levels

- Stratification of types according to "complexity" of their identity types
- Logic: notion of **propositions** given by one layer of this hierarchy

Univalence axiom

Specifies the identity type of a universe

Contractible types, propositions and sets

• *A* is **contractible**

isContr(A) :=
$$\sum_{x:A} \prod_{y:A} y = x$$

• A is a **proposition**

$$isProp(A) := \prod_{x,y:A} x = y$$

• *A* is a **set**

$$isSet(A) :\equiv \prod_{x,y:A} isProp(x = y)$$

$$Prop :\equiv \sum_{X:\mathcal{U}} isProp(X) \qquad Set :\equiv \sum_{X:\mathcal{U}} isSet(X)$$

Contractible types, propositions and sets

• *A* is **contractible**

isContr(A) :=
$$\sum_{x:A} \prod_{y:A} y = x$$

• A is a **proposition**

$$isProp(A) := \prod_{x,y:A} isContr(x = y)$$

• *A* is a **set**

$$isSet(A) :\equiv \prod_{x,y:A} isProp(x = y)$$

$$Prop :\equiv \sum_{X:\mathcal{U}} isProp(X) \qquad Set :\equiv \sum_{X:\mathcal{U}} isSet(X)$$

Equivalences

Definition

A map $f : A \rightarrow B$ is an **equivalence** if it has contractible fibers, i.e.,

isequiv(f) :=
$$\prod_{b:B} \text{isContr}\left(\sum_{a:A} f(a) = b\right)$$

The type of equivalences:

$$A \simeq B$$
 := $\sum_{f:A \to B}$ is equiv(f)

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a **synthetic** equality type between a, b : T

$$a =_T b$$
.

Depending on *T*, we might have a type of **analytic** equalities

 $a \simeq_T b$.

Univalence Principle for *T* and \simeq_T says that this map is an equivalence

 $(a =_T b) \to (a \simeq_T b)$

Different notions of equality

Synthetic vs. analytic equalities

In MLTT, we always have a **synthetic** equality type between a, b : T

$$a =_T b$$
.

Depending on *T*, we might have a type of **analytic** equalities

 $a \simeq_T b$.

Univalence Principle for *T* and \simeq_T says that this map is an equivalence

$$(a =_T b) \to (a \simeq_T b)$$

Univalence **Axiom**: for $T = \mathcal{U}$ and $(X \simeq_{\mathcal{U}} Y) =$ "equivalences $X \rightarrow Y$ ":

$$(X =_{\mathscr{U}} Y) \to (X \simeq_{\mathscr{U}} Y)$$

is an equivalence.

Transport along equivalence of types

$$x =_{\mathscr{U}} y \to \prod_{(P:\mathscr{U} \to \mathscr{U})} (P(x) \simeq P(y))$$

univalence :
$$\prod_{(x,y:\mathscr{U})} (x =_{\mathscr{U}} y \xrightarrow{\sim} x \simeq y)$$

$$x \simeq y \rightarrow \prod_{(P:\mathcal{U} \to \mathcal{U})} (P(x) \simeq P(y))$$

Transport along biimplication

$$(P = Q) \rightarrow \prod_{(S:\operatorname{Prop} \rightarrow \mathscr{U})} (S(P) \simeq S(Q))$$

univalence :
$$\prod_{(P,Q:\operatorname{Prop})} ((P = Q) \xrightarrow{\sim} (P \leftrightarrow Q))$$
$$(P \leftrightarrow Q) \rightarrow \prod_{(S:\operatorname{Prop} \rightarrow \mathscr{U})} (S(P) \simeq S(Q))$$

Transport along bijections

$$(X = Y) \to \prod_{(S:\mathsf{Set} \to \mathscr{U})} (P(X) \simeq P(Y))$$

univalence :
$$\prod_{(X,Y:\mathsf{Set})} ((X = Y) \xrightarrow{\sim} (X \cong Y))$$
$$(X \cong Y) \to \prod_{(S:\mathsf{Set} \to \mathscr{U})} (P(X) \simeq P(Y))$$

Transport along isomorphism of groups

$$x =_{\operatorname{Grp}} y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

univalence :
$$\prod_{(x,y:\operatorname{Grp})} (x =_{\operatorname{Grp}} y \xrightarrow{\sim} x \cong y)$$
$$x \cong y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

Transport along isomorphism of groups

$$x =_{\operatorname{Grp}} y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

univalence :
$$\prod_{(x,y:\operatorname{Grp})} (x =_{\operatorname{Grp}} y \xrightarrow{\sim} x \cong y)$$
$$x \cong y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

Structure Identity Principle

- One can show $(x =_{\mathsf{Grp}} y \xrightarrow{\sim} x \cong y)$, using univalence for types
- Works similarly for many other structures **built from (types that are) sets**
- See Coquand & Danielsson and HoTT book (Section 9.9)

Transport along isomorphism of groups

$$x =_{\operatorname{Grp}} y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

univalence :
$$\prod_{(x,y:\operatorname{Grp})} (x =_{\operatorname{Grp}} y \xrightarrow{\sim} x \cong y)$$
$$x \cong y \to \prod_{\substack{(P:\operatorname{Grp} \to \mathscr{U})}} (P(x) \simeq P(y))$$

Structure Identity Principle

- One can show $(x =_{\mathsf{Grp}} y \xrightarrow{\sim} x \cong y)$, using univalence for types
- Works similarly for many other structures **built from (types that are) sets**
- See Coquand & Danielsson and HoTT book (Section 9.9)

What about things that form a **higher** category, e.g., categories themselves?

Categories in type theory

- A category \mathscr{C} is given by
 - a type $\mathscr{C}_{o} : \mathscr{U}$ of **objects**
 - for any $a, b : \mathcal{C}_0$, a set $\mathcal{C}(a, b) : \mathcal{U}$ of **morphisms**
 - operations: identity & composition

$$I_a: \mathscr{C}(a,a)$$
$$(\circ)_{a,b,c}: \mathscr{C}(b,c) \to \mathscr{C}(a,b) \to \mathscr{C}(a,c)$$

• axioms: unitality & associativity

$$I \circ f = f$$
 $f \circ I = f$ $(h \circ g) \circ f = h \circ (g \circ f)$

Categories in type theory

- A category \mathscr{C} is given by
 - a type \mathscr{C}_{o} : \mathscr{U} of **objects**
 - for any $a, b : \mathcal{C}_0$, a set $\mathcal{C}(a, b) : \mathcal{U}$ of **morphisms**
 - operations: identity & composition

$$I_a: \mathscr{C}(a,a)$$
$$(\circ)_{a,b,c}: \mathscr{C}(b,c) \to \mathscr{C}(a,b) \to \mathscr{C}(a,c)$$

• axioms: unitality & associativity

$$I \circ f = f$$
 $f \circ I = f$ $(h \circ g) \circ f = h \circ (g \circ f)$

A univalent category is a category \mathscr{C} such that

$$(a = b) \rightarrow (a \cong b)$$

is an equivalence for all $a, b : \mathscr{C}_0$.

Local univalence implies global univalence

Theorem (A., Kapulkin, Shulman)

For categories A and B, let $A \simeq B$ denote the type of equivalences from A to B. If A and B are **univalent**, we have

 $(A =_{\mathsf{uCat}} B) \simeq (A \simeq B).$

Transport along equivalence of **univalent** categories

$$x =_{uCat} y \to \prod_{\substack{(P:uCat \to \mathscr{U})}} (P(x) \simeq P(y))$$

univalence :
$$\prod_{\substack{(x,y:uCat)}} (x =_{uCat} y \xrightarrow{\sim} x \simeq y)$$
$$x \simeq y \to \prod_{\substack{(P:uCat \to \mathscr{U})}} (P(x) \simeq P(y))$$

Transport along equivalence of **univalent** categories

$$x =_{uCat} y \to \prod_{\substack{(P:uCat \to \mathscr{U})}} (P(x) \simeq P(y))$$

univalence :
$$\prod_{\substack{(x,y:uCat)}} (x =_{uCat} y \xrightarrow{\sim} x \simeq y)$$
$$x \simeq y \to \prod_{\substack{(P:uCat \to \mathscr{U})}} (P(x) \simeq P(y))$$

Univalence Principle for categories

- Holds only for categories that satisfy themselves a univalence condition: **local univalence implies global univalence**
- Univalent categories are the right notion of categories in Univalent Foundations

Our work: Univalence Principle

- I. Define **signature**, **axiom**, and **theory** for mathematical structures, including higher-categorical ones
- 2. Given a theory $\mathcal{T} = (\mathcal{L}, T)$, define
 - *T*-models
 - Univalence of \mathcal{T} -models
 - Equivalence between \mathcal{T} -models
- 3. Prove a univalence result for univalent \mathcal{T} -models:

univalence :
$$\prod_{(x,y:uMod\mathscr{T})} ((x =_{uMod\mathscr{T}} y) \xrightarrow{\sim} (x \simeq_{uMod\mathscr{T}} y))$$

Our work: Univalence Principle

- I. Define **signature**, **axiom**, and **theory** for mathematical structures, including higher-categorical ones
- 2. Given a theory $\mathcal{T} = (\mathcal{L}, T)$, define
 - *T*-models
 - Univalence of \mathcal{T} -models
 - Equivalence between \mathcal{T} -models
- 3. Prove a univalence result for univalent \mathcal{T} -models:

univalence :
$$\prod_{(x,y:\mathsf{uMod}\mathscr{T})} ((x =_{\mathsf{uMod}\mathscr{T}} y) \xrightarrow{\sim} (x \simeq_{\mathsf{uMod}\mathscr{T}} y))$$

Technical challenge

Define a notion of "isomorphism" (called indiscernibility) that

- I. works for any signature/theory
- 2. specializes to categorical isomorphism for the theory of categories

1-categorical vs higer-categorical structures

When passing from set-level structures to higher-categorical structures, it **looks** like things get more complicated:

- I. What is the role of the "local univalence" condition on categories?
- 2. Are higher-categorical structures fundamentally different from I-categorical ones?

In the rest of the talk

- I. Show what the local univalence condition means for I-categorical structures
- 2. Our example: monoids

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- A Example: Univalence Principle for monoids, manually
- 😙 Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- 🕝 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- **1**. *M* : **Set**
- 2. $\mu: M \times M \to M$
- **3**. *e* : *M*
- 4. $\alpha : \prod_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) = a$
- 6. $\rho : \Pi_{(a:M)}\mu(a,e) = a$

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- **1**. *M* : **Set**
- 2. $\mu: M \times M \to M$
- 3. e : M
- 4. $\alpha : \prod_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) = a$
- 6. $\rho : \Pi_{(a:M)}\mu(a,e) = a$

Why *M* : **Set**?

Monoids in type theory

In type theory, a monoid is a tuple $(M, \mu, e, \alpha, \lambda, \rho)$ where

- **1**. *M* : **Set**
- 2. $\mu: M \times M \rightarrow M$
- **3**. *e* : *M*
- 4. $\alpha : \Pi_{(a,b,c:M)} \mu(\mu(a,b),c) = \mu(a,\mu(b,c))$
- 5. $\lambda : \Pi_{(a:M)}\mu(e,a) = a$

$$6. \ \rho: \Pi_{(a:M)}\mu(a,e) = a$$

Why M : **Set**?

Abstractly, a monoid is a (dependent) pair (data, proof) where

- data is 1.–3.
- proof is 4.–6.

The type of monoids

- We want two monoids (*data*, *proof*) and (*data'*, *proof'*) to be the same if *data* is the same as *data'*.
- This is guaranteed when the types of *proof* and *proof'* are **propositions**.
- This in turn is guaranteed when *M* is a **set**.

Summarily:

Monoid :=
$$\sum_{(M:Set)} \sum_{(\mu,e):MonoidStr(M)} MonoidAxioms(M, (\mu, e))$$

Can show

$$isProp(MonoidAxioms(M, (\mu, e)))$$

Monoid isomorphisms

Given $\mathbf{M} \equiv (M, \mu, e, \alpha, \lambda, \rho)$ and $\mathbf{M}' \equiv (M', \mu', e', \alpha', \lambda', \rho')$, a **monoid isomorphism** is a bijection $f : M \cong M'$ preserving μ and e.

Monoid isomorphisms

Given $\mathbf{M} \equiv (M, \mu, e, \alpha, \lambda, \rho)$ and $\mathbf{M}' \equiv (M', \mu', e', \alpha', \lambda', \rho')$, a **monoid isomorphism** is a bijection $f : M \cong M'$ preserving μ and e.

$$\mathbf{M} = \mathbf{M}' \simeq (M, \mu, e) = (M', \mu', e')$$

$$\simeq \sum_{p:M=M'} (\text{transport}^{Y \mapsto (Y \times Y \to Y)}(p, \mu) = \mu')$$

$$\times (\text{transport}^{Y \mapsto Y}(p, e) = e')$$

$$\simeq \sum_{f:M\cong M'} (f \circ \mu \circ (f^{-1} \times f^{-1}) = \mu')$$

$$\times (f \circ e = e')$$

$$\simeq \mathbf{M} \cong \mathbf{M}'$$

Transport along monoid isomorphism

We now have two ingredients:

Ι.

transport_{M,M'}:
$$(\mathbf{M} = \mathbf{M}') \rightarrow \prod_{B: \text{Monoid} \rightarrow \mathscr{U}} (B(\mathbf{M}) \simeq B(\mathbf{M}'))$$

2.

$$(M = M') \simeq (M \cong M')$$

Composing these, we get

$$\operatorname{transport}_{\mathsf{M},\mathsf{M}'}:(\mathsf{M}\cong\mathsf{M}')\to\prod_{B:\operatorname{\mathsf{Monoid}}\to\mathscr{U}}(B(\mathsf{M})\simeq B(\mathsf{M}'))$$

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- 5 Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- 🕝 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

The signature of monoids

Example

Signature \mathcal{L}_{mon} for a monoid:

A structure M for this signature consists of

- 1. a type *MX*
- 2. a family of types $M\mu(x, y, z)$ for x, y, z : MX
- 3. a family of types MO(x) for x : MX
- 4. a family of types ME(x, y) for x, y : MX

The theory of monoids

Not all structures represent monoids. **Axioms** specify those structures that are a monoid:

- Axioms of a monoid
 - I. Monoid axioms:

$$\begin{aligned} \forall (x, y, z, z' : X) . \mu(x, y, z) &\rightarrow \mu(x, y, z') \rightarrow E(z, z') \\ \forall (x, y : X) . \exists (z : X) . \mu(x, y, z) \\ \forall (x, x', y, z : X) . E(x, x') \rightarrow \mu(x, y, z) \rightarrow \mu(x', y, z) \\ \forall (x, y : X) . E(x, y) \rightarrow E(y, x) \end{aligned}$$

- 2. "Homotopical axioms":
 - 2.1 MX is a set
 - 2.2 $M\mu(x,y,z)$, MO(x), ME(x,y) are pointwise propositions

Indiscernibility for elements of a monoid

Given a, b : MX, an **indiscernibility** $a \simeq b$ consists of "equivalences of types of everything above a and b"

$$M\mu(a, y, z) \simeq M\mu(b, y, z)$$
$$M\mu(x, a, z) \simeq M\mu(x, b, z)$$
$$M\mu(x, y, a) \simeq M\mu(x, y, b)$$
$$M\mu(a, a, z) \simeq M\mu(b, b, z)$$

 $MO(a) \simeq MO(b)$ $ME(a,y) \simeq ME(b,y)$

. . .

• • •

Indiscernibility

- I. $a \approx b$ means that *a* and *b* behave in the same way within the structure.
- 2. In a model *M* of the theory of monoids, $a \approx b$ reduces to ME(a, b).
- 3. Definition of indiscernibility carries over to any \mathcal{L} , and any sort in \mathcal{L} .

Indiscernibility

- I. $a \approx b$ means that *a* and *b* behave in the same way within the structure.
- 2. In a model *M* of the theory of monoids, $a \approx b$ reduces to ME(a, b).
- 3. Definition of indiscernibility carries over to any \mathcal{L} , and any sort in \mathcal{L} .

Definition

1. Given $w, w' : M\mu(a, b, c)$, an indiscernibility $w \simeq w'$ is given by an equivalence

$\mathbf{I}\simeq\mathbf{I}$

(since there is nothing above μ in \mathscr{L}_{mon}). Hence $(w \simeq w') = \mathbf{I}$. 2. Similar for w, w' : MO(a), and w, w' : ME(a, b).

Univalence of models

Definition

A monoid *M* is **univalent** if the maps

$$(a=b) \to (a \asymp b) \tag{1}$$

$$(w = w') \to (w \asymp w') \tag{2}$$

are equivalences.

Univalence of models

Definition

A monoid *M* is **univalent** if the maps

$$(a=b) \to (a \asymp b) \tag{1}$$

$$(w = w') \to (w \asymp w') \tag{2}$$

are equivalences.

Observations

- 1. Since $(w \simeq w') = 1$, condition (2) is equivalent to $M\mu$, MO, and *ME* being pointwise **propositions**.
- 2. Since $(a \simeq b) = ME(a, b)$, condition (1) is equivalent to *M* being a **set with identity** a = b **given by** E(a, b).

Univalence of models

Definition

A monoid *M* is **univalent** if the maps

$$(a=b) \to (a \asymp b) \tag{1}$$

$$(w = w') \to (w \asymp w') \tag{2}$$

are equivalences.

Observations

- 1. Since $(w \simeq w') = 1$, condition (2) is equivalent to $M\mu$, MO, and *ME* being pointwise **propositions**.
- 2. Since $(a \simeq b) = ME(a, b)$, condition (1) is equivalent to *M* being a **set with identity** a = b **given by** E(a, b).

Summary: a univalent monoid in this sense is exactly the same a monoid as previously defined.

Equivalence of models

Given monoids M, N, an equivalence is

$$e_{X} : MX \to NX$$

$$e_{\mu} : \prod_{x,y,z:MX} M\mu(x,y,z) \to N\mu(ex,ey,ez)$$

$$e_{O} : \prod_{x:MX} MO(x) \to NO(ex)$$

$$e_{E} : \prod_{x,y:MX} : ME(x,y) \to NE(ex,ey)$$

such that e_X , $(e_\mu)_{x,y,z}$, $(e_O)_x$, and $(e_E)_{x,y}$ are (split-)surjective.

Observations

- **1**. For univalent monoids, condition of e_E being split-surjective entails that e_X is injective.
- 2. An equivalence of univalent monoids is an isomorphism of sets that preserves multiplication and unit.

Univalence for univalent monoids

Theorem (Univalence Principle)

For univalent M and N,

 $(M = N) \simeq (M \simeq N)$

Local univalence condition on categories

For the signature of categories,

an indiscernibility $a \approx b$ in *MO* is the same as an isomorphism $a \cong b$, via a Yoneda-style argument. The univalence condition at *A* says that *A* is a set with f = g given by ME(f,g).

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- **3** The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- 🕝 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Where does our work take place?

Working in **two-level type theory** of Annenkov, Capriotti, Kraus, Sattler.

- Univalent Foundations, embedded in an extensional type theory
- Universes $\mathscr{U} \hookrightarrow \mathscr{U}^s$
- \mathscr{U} implements univalent type theory.
- Every type $T : \mathcal{U}^s$ is equipped with a strict equality type $a \equiv_T b$ with the usual rules for the identity type, but which also satisfies UIP.
- Signatures live in \mathcal{U}^s (are meta-mathematical), but models and their morphisms live in \mathcal{U} (are mathematical)

Signatures

- Signatures are abstract specification devices for mathematical structures
- We have two notions of signature.

"Diagram" Signatures

- Certain categories where
 - objects indicate sorts
 - morphisms indicate dependencies
- + Intuitive
- Complicated to reason about

"Functorial" Signatures

- (Co)inductively defined
- + Easy to reason about
- Difficult/unintuitive for specifying instances

Translation of Signatures

- We use diagram signatures for examples
- All results are proved for functorial signatures
- Algorithmic translation from diagram to functorial signatures
- Functorial signatures axiomatize the operation of "derivation"
- Functorial signatures are more general than diagram signatures

Diagram Signatures and Their Models

Definition (Diagram Signatures)

Too complicated, let's just draw some examples!

Definition (Models of a Diagram Signature) Even more complicated...

- Definition of model uses "derivation" of signatures
- Derivation does not preserve "finiteness" of signatures

Example of derivation

Example

In \mathscr{L}_{rg} we have $(\mathscr{L}_{rg})_o \equiv \{O\}$. Let M_o be a (a function picking out) the two-element set $\{a, b\}$. Then $(\mathscr{L}_{rg})'_{M_o}$ is the following signature, with four sorts of rank o and two sorts of rank 1:

Functorial Signatures

Observation: Essential Features of a Diagram Signature ${\mathcal L}$

- The type $\mathcal{L}(o)$ of non-dependent sorts
- The derived diagram signature \mathscr{L}'_M for any $M : \mathscr{L}_0 \to \mathscr{U}$.

Definition (Functorial Signature, coinductively) Consists of

- a type \mathscr{L}_{o}
- for any $M: L_0 \to \mathcal{U}$, a functorial signature $\mathcal{L}'(M)$
- Definition can be made inductive by decorating it with a decreasing **height**.
- Need to define not just the pretype, but the strict **category** of functorial signatures (of height *n*).

Models of a Functorial Signature

Definition (\mathscr{L} -structure)

- Of \mathcal{L} of height o: a unique structure
- Of \mathcal{L} of height n + 1:
 - **I.** A function $M : \mathscr{L}_{o} \to \mathscr{U}$
 - 2. a structure of $\mathcal{L}'(M)$.
- Morphism of structures, composition, identity
- Pullback of structures along morphisms of signatures

Axioms and Theories

- An \mathcal{L} -axiom is a function $Struc(\mathcal{L}) \rightarrow hProp$.
- A **functorial theory** is a pair (\mathcal{L} , *T*) of a functorial signature \mathcal{L} and a family *T* of \mathcal{L} -axioms

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- 4 Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- 7 Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Indiscernibility

Goal

Define a notion of "isomorphism" for elements of a structure

Definition (Indiscernibility)

Too complicated to write down, will be defined for structures of diagram signatures by example.

Definition (Univalence)

An \mathcal{L} -structure *M* is **univalent** if for any sort *K* of \mathcal{L} and any a, b : M(K), the map

$$a = b \to a \cong b$$

is an equivalence.

Results on Homotopy Levels

Theorem

If \mathcal{L} has height n + 1, M: **Struc**(\mathcal{L}) is univalent, and K: $\mathcal{L}(0)$, then *MK* is an (n - 1)-type.

Theorem

If \mathcal{L} has height n, then the type of univalent \mathcal{L} -structures is an (n-1)-type.

Univalence Principle

Theorem

For any functorial signature \mathcal{L} and M,N: **Struc**(\mathcal{L}) that are both univalent, the canonical map

$$(M=N) \to (M \simeq N)$$

is an equivalence.

Other examples

- First-order logic (with equality)
- Higher-order logic, e.g., topological spaces, suplattices
- Categories
- Dagger categories
- (Ana)functors
- Profunctors
- Displayed categories / Fibrations
- Bicategories
- Double categories
- . . .

Outline

- I Motivation for Univalent Foundations
- 2 Reminder: Univalent Foundations
- 3 The Univalence Principle
- Example: Univalence Principle for monoids, manually
- **5** Example: Univalence Principle for monoids, in our framework
- 6 Two Notions of Signature
- Indiscernibility and Univalence
- 8 Examples of Functorial Signatures

Higher-Order Logic: Topological Spaces

- $M \mapsto (M \rightarrow h \text{Prop}) \rightarrow h \text{Prop}$
- Space *M* is such a structure by equipping it with the family of all supersets of the set of open subsets, i.e., a predicate that holds of *X* just when $U \in X$ for every open subset *U* of *M*.
- Morphism of structures: f : M → N such that if X contains all opens in M, then its image under f contains all opens in N, which is to say that f⁻¹(U) ∈ X for all opens U in N. This is equivalent to saying that f⁻¹(U) is open in M for all opens U in N, i.e., that f is continuous.

Suplattices

$\mathscr{L}'_{M} =_{\mathrm{df}} (M \times M) + ((\sum_{(A:\mathbf{Set})} (A \to M)) \times M)$

- *M* × *M* stands for the partial ordering—(*m*, *n*) meaning *m* ≤ *n*—whereas the second summand denotes suprema: (*X*, *s*) holds if and only if *s* is a supremum of the family *X* of elements of *M*.
- Structure *M*, then $m_1, m_2 : M$ are indiscernible if $m_1 \le m_2$ and $m_2 \le m_1$. (That m_1 and m_2 are suprema of exactly the same families *X* is then automatic.)
- Univalence at bottom level means that *M* is a set, and that the preorder \leq on *M* is antisymmetric.
- Morphism of structures is sup-preserving morphism of preorders
- It is an equivalence if it is (split) surjective up to isomorphism and reflects the preorder (and hence also suprema of families).

Open Questions

- Completion operation for structures turning a structure into a univalent one, universally? Ongoing work, e.g., by Kobe Wullaert.
- Univalence principle for structures of infinite height?
- Class of axioms that are invariant under weak equivalence?
- Signatures where functions are native, that is, not expressed as functional relations?
- Formalization? Ongoing work, e.g., by Elif Uskuplu.

References

- Coquand, Danielsson, "Isomorphism is equality"
- The HoTT book (Section 9.9 for Structure Identity Principle)
- Ahrens, Kapulkin, Shulman, "Univalent categories and the Rezk completion"
- Ahrens, North, Shulman, Tsementzis, "The Univalence Principle"