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Indiscernibility of identicals

Indiscernibility of identicals

x = y → ∀P (P(x)↔ P(y))

• Reasoning in logic is invariant under equality
• In mathematics, reasoning should be invariant under weaker

notion of sameness!

Equivalence principle
Reasoning in mathematics should be invariant under the
appropriate notion of sameness.



Invariance under sameness

Notion of sameness depends on the objects under consideration:

An equivalence principle for group theorists

G∼= H→∀ group-theoretic properties P, (P(G)↔ P(H))

An equivalence principle for category theorists

A≃ B→∀ category-theoretic properties P, (P(A)↔ P(B))

What are “structural” properties?
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Violating the equivalence principle

What is not a structural property?

Exercise
Find a statement about categories that is not invariant under the
equivalence of categories

•
##

cc • ≃ •

A solution
“The category C has exactly one object.”

Can we rule out such “non-structural” statements?
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A language for invariant properties

Michael Makkai, Towards a Categorical Foundation of Mathematics:
The basic character of the Principle of Isomorphism is that
of a constraint on the language of Abstract Mathematics;
a welcome one, since it provides for the separation of sense
from nonsense.

Makkai’s FOLDS (First Order Logic with Dependent Sorts)
A language for categorical structures in which only invariant
properties can be expressed

• FOLDS is not a foundation of mathematics
• Invariance only for properties, not for constructions
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Univalent Foundations and the Univalence Principle

Voevodsky’s goals
• Univalent Foundations as an “invariant language”
• Invariance not only for statements, but also for constructions:

any construction on objects in UF can be transported along
equivalences of objects

Essential ingredients for Univalent Foundations
• Martin-Löf identity type
• Voevodsky’s univalence axiom

In the rest of this talk
How is reasoning in Univalent Foundations invariant under
equivalence?
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Overview of types in type theory

Type former Notation (special case) canonical term

Inhabitant a : A

Dependent type x : A ⊢ B(x)

Sigma type
∑

x:A B(x) A× B (a,b)

Product type
∏

x:A B(x) A→ B λ(x : A).b

Coproduct type A+ B inl(a), inr(b)

Identity type a= b refl(a) : a= a

Universe U

Base types Nat, Bool, 1, 0



Identity vs equality

Inhabitants of x = y behave like equality in many ways
• refl(x) : x = x
• sym(x,y) : x = y→ y = x
• trans(x,y, z) : x = y× y = z→ x = z

Transport

transport : x = y→
∏

B:A→U

�

B(x)≃ B(y)
�

Inhabitants of x = y behave unlike equality
• Can iterate identity type
• Cannot show that any two identities are identical



The important features of univalent foundations

Homotopy levels
• Stratification of types according to “complexity” of their

identity types
• Logic: notion of propositions given by one layer of this

hierarchy

Univalence axiom
Specifies the identity type of a universe



Contractible types, propositions and sets

• A is contractible

isContr(A) :≡
∑

x:A

∏

y:A
y = x

• A is a proposition

isProp(A) :≡
∏

x,y:A
x = y

• A is a set

isSet(A) :≡
∏

x,y:A
isProp(x = y)

Prop :≡
∑

X:U
isProp(X) Set :≡

∑

X:U
isSet(X)



Contractible types, propositions and sets

• A is contractible

isContr(A) :≡
∑

x:A

∏

y:A
y = x

• A is a proposition

isProp(A) :≡
∏

x,y:A
isContr(x = y)

• A is a set

isSet(A) :≡
∏

x,y:A
isProp(x = y)

Prop :≡
∑

X:U
isProp(X) Set :≡

∑

X:U
isSet(X)



Equivalences

Definition
A map f : A→ B is an equivalence if it has contractible fibers, i.e.,

isequiv(f) :≡
∏

b:B

isContr

�

∑

a:A
f(a) = b

�

The type of equivalences:

A≃ B :≡
∑

f :A→B

isequiv(f)
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Different notions of equality

Synthetic vs. analytic equalities
In MLTT, we always have a synthetic equality type between a,b : T

a=T b.

Depending on T, we might have a type of analytic equalities

a≃T b.

Univalence Principle for T and ≃T says that this map is an
equivalence

(a=T b)→ (a≃T b)

Univalence Axiom: for T =U and (X ≃U Y) = “equivalences
X→ Y”:

(X =U Y)→ (X ≃U Y)

is an equivalence.
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Transport along equivalence of types

x =U y→
∏

(P:U→U )

(P(x)≃ P(y))

univalence :
∏

(x,y:U )

(x =U y ∼−→ x ≃ y)

x ≃ y→
∏

(P:U→U )

(P(x)≃ P(y))



Transport along biimplication

(P= Q)→
∏

(S:Prop→U )

(S(P)≃ S(Q))

univalence :
∏

(P,Q:Prop)

((P= Q) ∼−→ (P↔ Q))

(P↔ Q)→
∏

(S:Prop→U )

(S(P)≃ S(Q))



Transport along bijections

(X = Y)→
∏

(S:Set→U )

(P(X)≃ P(Y))

univalence :
∏

(X,Y:Set)

((X = Y) ∼−→ (X ∼= Y))

(X ∼= Y)→
∏

(S:Set→U )

(P(X)≃ P(Y))



Transport along isomorphism of groups

x =Grp y→
∏

(P:Grp→U )

(P(x)≃ P(y))

univalence :
∏

(x,y:Grp)

(x =Grp y ∼−→ x ∼= y)

x ∼= y→
∏

(P:Grp→U )

(P(x)≃ P(y))

Structure Identity Principle
• One can show (x =Grp y ∼−→ x ∼= y), using univalence for types
• Works similarly for many other structures built from (types

that are) sets
• See Coquand & Danielsson and HoTT book (Section 9.9)

What about things that form a higher category, e.g., categories
themselves?
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Categories in type theory
A category C is given by
• a type C0 :U of objects
• for any a,b :C0, a set C (a,b) :U of morphisms
• operations: identity & composition

1a :C (a,a)
(◦)a,b,c :C (b, c)→C (a,b)→C (a, c)

• axioms: unitality & associativity

1 ◦ f = f f ◦ 1= f (h ◦ g) ◦ f = h ◦ (g ◦ f)

A univalent category is a category C such that

(a= b)→ (a∼= b)

is an equivalence for all a,b :C0.
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Local univalence implies global univalence

Theorem (A., Kapulkin, Shulman)
For categories A and B, let A≃ B denote the type of equivalences from
A to B. If A and B are univalent, we have

(A=uCat B)≃ (A≃ B).



Transport along equivalence of univalent categories

x =uCat y→
∏

(P:uCat→U )

(P(x)≃ P(y))

univalence :
∏

(x,y:uCat)

(x =uCat y ∼−→ x ≃ y)

x ≃ y→
∏

(P:uCat→U )

(P(x)≃ P(y))

Univalence Principle for categories
• Holds only for categories that satisfy themselves a univalence

condition: local univalence implies global univalence
• Univalent categories are the right notion of categories in

Univalent Foundations
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Our work: Univalence Principle
1. Define signature, axiom, and theory for mathematical

structures, including higher-categorical ones
2. Given a theory T = (L ,T), define

• T -models
• Univalence of T -models
• Equivalence between T -models

3. Prove a univalence result for univalent T -models:

univalence :
∏

(x,y:uModT )

((x =uModT y) ∼−→ (x ≃uModT y))

Technical challenge
Define a notion of “isomorphism” (called indiscernibility) that
1. works for any signature/theory
2. specializes to categorical isomorphism for the theory of

categories
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1-categorical vs higer-categorical structures

When passing from set-level structures to higher-categorical
structures, it looks like things get more complicated:
1. What is the role of the “local univalence” condition on

categories?
2. Are higher-categorical structures fundamentally different from

1-categorical ones?

In the rest of the talk
1. Show what the local univalence condition means for

1-categorical structures
2. Our example: monoids
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Monoids in type theory

In type theory, a monoid is a tuple (M,µ, e,α,λ,ρ) where
1. M : Set
2. µ : M×M→M
3. e : M
4. α : Π(a,b,c:M)µ(µ(a,b), c) = µ(a,µ(b, c))
5. λ : Π(a:M)µ(e,a) = a
6. ρ : Π(a:M)µ(a, e) = a

Why M : Set?

Abstractly, a monoid is a (dependent) pair (data,proof) where
• data is 1.–3.
• proof is 4.–6.
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The type of monoids

• We want two monoids (data,proof) and (data′,proof ′) to be
the same if data is the same as data′.
• This is guaranteed when the types of proof and proof ′ are

propositions.
• This in turn is guaranteed when M is a set.

Summarily:

Monoid :≡
∑

(M:Set)

∑

(µ,e):MonoidStr(M)

MonoidAxioms(M, (µ, e))

Can show
isProp(MonoidAxioms(M, (µ, e)))



Monoid isomorphisms

Given M≡ (M,µ, e,α,λ,ρ) and M′ ≡ (M′,µ′, e′,α′,λ′,ρ′), a
monoid isomorphism is a bijection f : M ∼=M′ preserving µ and e.

M=M′ ≃ (M,µ, e) = (M′,µ′, e′)

≃
∑

p:M=M′
(transportY 7→(Y×Y→Y)(p,µ) = µ′)

× (transportY 7→Y(p, e) = e′)

≃
∑

f :M∼=M′

�

f ◦µ ◦ (f−1 × f−1) = µ′
�

× (f ◦ e= e′)
≃ M∼=M′
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Transport along monoid isomorphism

We now have two ingredients:
1.

transportM,M′ : (M=M′)→
∏

B:Monoid→U

�

B(M)≃ B(M′)
�

2.
(M=M′) ≃ (M∼=M′)

Composing these, we get

transportM,M′ : (M
∼=M′)→
∏

B:Monoid→U

�

B(M)≃ B(M′)
�
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The signature of monoids

Example
Signature Lmon for a monoid:

Lmon =
µ O E

X

A structure M for this signature consists of
1. a type MX
2. a family of types Mµ(x,y, z) for x,y, z : MX
3. a family of types MO(x) for x : MX
4. a family of types ME(x,y) for x,y : MX



The theory of monoids

Not all structures represent monoids. Axioms specify those
structures that are a monoid:

Axioms of a monoid
1. Monoid axioms:

∀(x,y, z, z′ : X).µ(x,y, z)→ µ(x,y, z′)→ E(z, z′)
∀(x,y : X).∃(z : X).µ(x,y, z)

∀(x,x′,y, z : X).E(x,x′)→ µ(x,y, z)→ µ(x′,y, z)
∀(x,y : X).E(x,y)→ E(y,x)

. . .

2. “Homotopical axioms”:
2.1 MX is a set
2.2 Mµ(x,y, z), MO(x), ME(x,y) are pointwise propositions



Indiscernibility for elements of a monoid

µ O E

X
Given a,b : MX, an indiscernibility a≍ b consists of “equivalences
of types of everything above a and b”

Mµ(a,y, z)≃Mµ(b,y, z)
Mµ(x,a, z)≃Mµ(x,b, z)
Mµ(x,y,a)≃Mµ(x,y,b)
Mµ(a,a, z)≃Mµ(b,b, z)

. . .

MO(a)≃MO(b)
ME(a,y)≃ME(b,y)

. . .



Indiscernibility

1. a≍ b means that a and b behave in the same way within the
structure.

2. In a model M of the theory of monoids, a≍ b reduces to
ME(a,b).

3. Definition of indiscernibility carries over to any L , and any
sort in L .

Definition
1. Given w,w′ : Mµ(a,b, c), an indiscernibility w≍ w′ is given by

an equivalence

1≃ 1

(since there is nothing above µ in Lmon). Hence (w≍ w′) = 1.
2. Similar for w,w′ : MO(a), and w,w′ : ME(a,b).



Indiscernibility

1. a≍ b means that a and b behave in the same way within the
structure.

2. In a model M of the theory of monoids, a≍ b reduces to
ME(a,b).

3. Definition of indiscernibility carries over to any L , and any
sort in L .

Definition
1. Given w,w′ : Mµ(a,b, c), an indiscernibility w≍ w′ is given by

an equivalence

1≃ 1

(since there is nothing above µ in Lmon). Hence (w≍ w′) = 1.
2. Similar for w,w′ : MO(a), and w,w′ : ME(a,b).



Univalence of models

Definition
A monoid M is univalent if the maps

(a= b)→ (a≍ b) (1)
(w= w′)→ (w≍ w′) (2)

are equivalences.

Observations
1. Since (w≍ w′) = 1, condition (2) is equivalent to Mµ, MO,

and ME being pointwise propositions.
2. Since (a≍ b) =ME(a,b), condition (1) is equivalent to M

being a set with identity a= b given by E(a,b).

Summary: a univalent monoid in this sense is exactly the same a
monoid as previously defined.



Univalence of models

Definition
A monoid M is univalent if the maps

(a= b)→ (a≍ b) (1)
(w= w′)→ (w≍ w′) (2)

are equivalences.

Observations
1. Since (w≍ w′) = 1, condition (2) is equivalent to Mµ, MO,

and ME being pointwise propositions.
2. Since (a≍ b) =ME(a,b), condition (1) is equivalent to M

being a set with identity a= b given by E(a,b).

Summary: a univalent monoid in this sense is exactly the same a
monoid as previously defined.



Univalence of models

Definition
A monoid M is univalent if the maps

(a= b)→ (a≍ b) (1)
(w= w′)→ (w≍ w′) (2)

are equivalences.

Observations
1. Since (w≍ w′) = 1, condition (2) is equivalent to Mµ, MO,

and ME being pointwise propositions.
2. Since (a≍ b) =ME(a,b), condition (1) is equivalent to M

being a set with identity a= b given by E(a,b).

Summary: a univalent monoid in this sense is exactly the same a
monoid as previously defined.



Equivalence of models
Given monoids M, N, an equivalence is

eX : MX→ NX

eµ :
∏

x,y,z:MX
Mµ(x,y, z)→ Nµ(ex, ey, ez)

eO :
∏

x:MX
MO(x)→ NO(ex)

eE :
∏

x,y:MX
: ME(x,y)→ NE(ex, ey)

such that eX , (eµ)x,y,z, (eO)x, and (eE)x,y are (split-)surjective.

Observations
1. For univalent monoids, condition of eE being split-surjective

entails that eX is injective.
2. An equivalence of univalent monoids is an isomorphism of sets

that preserves multiplication and unit.



Univalence for univalent monoids

Theorem (Univalence Principle)
For univalent M and N,

(M = N)≃ (M ≃ N)



Local univalence condition on categories

For the signature of categories,

T I E

A

O

an indiscernibility a≍ b in MO is the same as an isomorphism
a∼= b, via a Yoneda-style argument.
The univalence condition at A says that A is a set with f = g given
by ME(f ,g).
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Where does our work take place?

Working in two-level type theory of Annenkov, Capriotti, Kraus,
Sattler.
• Univalent Foundations, embedded in an extensional type

theory
• Universes U ,→U s

• U implements univalent type theory.
• Every type T :U s is equipped with a strict equality type

a≡T b with the usual rules for the identity type, but which
also satisfies UIP.
• Signatures live in U s (are meta-mathematical), but models

and their morphisms live in U (are mathematical)



Signatures
• Signatures are abstract specification devices for mathematical

structures
• We have two notions of signature.

“Diagram” Signatures
• Certain categories where
• objects indicate sorts
• morphisms indicate dependencies

+ Intuitive
− Complicated to reason about

“Functorial” Signatures
• (Co)inductively defined
+ Easy to reason about
− Difficult/unintuitive for specifying instances



Translation of Signatures

• We use diagram signatures for examples
• All results are proved for functorial signatures
• Algorithmic translation from diagram to functorial signatures
• Functorial signatures axiomatize the operation of “derivation”
• Functorial signatures are more general than diagram

signatures



Diagram Signatures and Their Models

Definition (Diagram Signatures)
Too complicated, let’s just draw some examples!

Definition (Models of a Diagram Signature)
Even more complicated. . .

• Definition of model uses “derivation” of signatures
• Derivation does not preserve “finiteness” of signatures



Example of derivation
2 I

i
��

1 A

d
		

c
��

0 O

Example

In Lrg we have (Lrg)0 ≡ {O}. Let M0 be a (a function picking out)
the two-element set {a,b}. Then (Lrg)

′
M0

is the following signature,
with four sorts of rank 0 and two sorts of rank 1:

I(a,a)

i
��

I(b,b)

i
��

A(a,a) A(a,b) A(b,a) A(b,b)



Functorial Signatures

Observation: Essential Features of a Diagram Signature L
• The type L (0) of non-dependent sorts
• The derived diagram signature L ′M for any M :L0→U .

Definition (Functorial Signature, coinductively)
Consists of
• a type L0

• for any M : L0→U , a functorial signature L ′(M)

• Definition can be made inductive by decorating it with a
decreasing height.
• Need to define not just the pretype, but the strict category of

functorial signatures (of height n).



Models of a Functorial Signature

Definition (L -structure)
• Of L of height 0: a unique structure
• Of L of height n+ 1:

1. A function M :L0→U
2. a structure of L ′(M).

• Morphism of structures, composition, identity
• Pullback of structures along morphisms of signatures



Axioms and Theories

• An L -axiom is a function Struc(L )→ hProp.
• A functorial theory is a pair (L ,T) of a functorial signature
L and a family T of L -axioms
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Indiscernibility

Goal
Define a notion of “isomorphism” for elements of a structure

Definition (Indiscernibility)
Too complicated to write down, will be defined for structures of
diagram signatures by example.

Definition (Univalence)
An L -structure M is univalent if for any sort K of L and any
a,b : M(K), the map

a= b→ a∼= b

is an equivalence.



Results on Homotopy Levels

Theorem

If L has height n+ 1, M : Struc(L ) is univalent, and K :L (0), then
MK is an (n− 1)-type.

Theorem

If L has height n, then the type of univalent L -structures is an
(n− 1)-type.



Univalence Principle

Theorem

For any functorial signature L and M,N : Struc(L ) that are both
univalent, the canonical map

(M = N)→ (M ≃ N)

is an equivalence.



Other examples

• First-order logic (with equality)
• Higher-order logic, e.g., topological spaces, suplattices
• Categories
• Dagger categories
• (Ana)functors
• Profunctors
• Displayed categories / Fibrations
• Bicategories
• Double categories
• . . .
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Higher-Order Logic: Topological Spaces

• M 7→ (M→ hProp)→ hProp
• Space M is such a structure by equipping it with the family of

all supersets of the set of open subsets, i.e., a predicate that
holds of X just when U ∈ X for every open subset U of M.
• Morphism of structures: f : M→ N such that if X contains all

opens in M, then its image under f contains all opens in N,
which is to say that f−1(U) ∈ X for all opens U in N. This is
equivalent to saying that f−1(U) is open in M for all opens U in
N, i.e., that f is continuous.



Suplattices
•

L ′M =df (M×M) + ((
∑

(A:Set)(A→M))×M)

• M×M stands for the partial ordering—(m,n) meaning
m≤ n—whereas the second summand denotes suprema:
(X, s) holds if and only if s is a supremum of the family X of
elements of M.
• Structure M, then m1,m2 : M are indiscernible if m1 ≤m2 and

m2 ≤m1. (That m1 and m2 are suprema of exactly the same
families X is then automatic.)
• Univalence at bottom level means that M is a set, and that the

preorder ≤ on M is antisymmetric.
• Morphism of structures is sup-preserving morphism of

preorders
• It is an equivalence if it is (split) surjective up to isomorphism

and reflects the preorder (and hence also suprema of families).



Open Questions

• Completion operation for structures — turning a structure into
a univalent one, universally? Ongoing work, e.g., by Kobe
Wullaert.
• Univalence principle for structures of infinite height?
• Class of axioms that are invariant under weak equivalence?
• Signatures where functions are native, that is, not expressed

as functional relations?
• Formalization? Ongoing work, e.g., by Elif Uskuplu.
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