Interactions of Proof Assistants and Mathematics,
International Summer School, Regensburg

PART 2: FORMALISATION OF ADDITIVE COMBINATORICS
IN ISABELLE/HOL

22/9/2023

UNIVERSITY OF
CAMBRIDGE
| Angeliki Koutsoukou-Argyraki
Royal Holloway, University of London, UK
and
erc University of Cambridge, UK

European Research Council
Established by the European Commission

In Mid-2022 | initiated a line of work to formalise material in additive
combinatorics, on the structure of sumsets of finite subsets of abelian
groups.

(See my invited talk in the proceedings of the 14™ Conference on
Interactive Theorem Proving (ITP 2023)
DOI: 10.4230/LIPIcs.ITP.2023.1)

Basic definitions:

Let A, B be finite subsets of an abelian group. The sumset A + B is the set
{a+0b|ae Abe B} The difference set A— B is the set {a —b|a € A, b€ B}.

For n many copies A + ... + A we write nA.

Let G be an abelian group. An additive quadruple in G is a quadruple (a, b, ¢,d) €
G4 such that a + b = ¢+ d. The additive energy of a subset A of G is the number
of additive quadruples in A* divided by |A|>.

My motivation:

* Case studies to explore limits of formalisation: material combining
different areas

* Advanced material, relatively recent research results but very simple
prerequisites (some of which had to be built by us)

* Using source material from the Cambridge Mathematical Tripos
* Working with mathematics students too

* Contribution to the Isabelle libraries of formalised mathematics (AFP)

My motivation:

* Personal interest in this area of mathematics:

material provides tools for the study of the active research area of arithmetic
progressions in integers.

Note: we have already formalised Roth’s important Theorem on Arithmetic
Progressions.

[Suggested by Lawrence Paulson]

Used the experimental abstract algebra library by Clemens Ballarin (“A Case
Study in Basic Algebra”, 2019) available on the AFP, instead of the standard
algebra library. Makes heavy use of locales and follows Jacobson’s “Basic

Algebra” book.

AFP entries produced during the 2022 project:

- The Plinnecke-Ruzsa Inequality (A. K.-A. & Lawrence C. Paulson, 2022).
- Khovanskii's Theorem (A. K.-A. & Lawrence C. Paulson, 2022).

- The Balog-Szemeredi-Gowers Theorem (A. K.-A., Mantas BaksSys and
Chelsea Edmonds, 2022).

(Source: Introduction to Additive Combinatorics, Course notes for Part Il
of the Cambridge Mathematical Tripos by W.T. Gowers (2022)).

- Kneser’s Theorem and the Cauchy-Davenport Theorem (Mantas BaksSys
& A. K.-A., 2022)

(Source: DeVos, M. (2014). A Short Proof of Kneser’s Addition Theorem for
Abelian Groups. In: Nathanson, M. (eds) Combinatorial and Additive
Number Theory. Springer Proceedings in Mathematics & Statistics, vol 101.)

subsection <Key definitions (sumset, difference set) and basic lemmas >
text <Working in an arbitrary Abelian group, with additive syntax>

locale additive abelian group = abelian group G "“(&@)" 0
for G and addition (infixl "@&" 65) and zero ("0")

begin

abbreviation G minus:: "'a = 'a = 'a" (infix1l "&" 70)
where "X © y = x ® inverse y "

lemma inverse closed: "x € G = inverse x € G"
by blast

subsubsection <Sumsets»

inductive_set sumset :: "'a set = 'a set = 'a set" for A B
where
sumsetI[intro]: "[a € A; a € G; b € B; b € G) = a & b € sumset A B"

lemma sumset eq: "sumset AB = {c. dae€e ANG. dbeBNG. c=a & b}"
by (auto simp: sumset.simps elim!: sumset.cases)

lemma sumset: "sumset AB= (JaeANnG. UbeBnG. {aa@bhH"
by (auto simp: sumset eq)

subsubsection <Iterated sumsets:>

definition sumset iterated :: "'a set = nat = 'a set"
where "sumset iterated A r = Finite Set.fold (sumset o (A . A)) {0} {..<r}"

lemma sumset iterated O [simp]: "sumset iterated A 0 = {0}"
by (simp add: sumset iterated def)

lemma sumset iterated Suc [simp]: "sumset iterated A (Suc k) = sumset A (sumset iterated A k)"
(is "?lhs = ?rhs")
proof -
interpret comp fun commute on "{..k}" "sumset o (A . A)"
using sumset assoc sumset commute by (auto simp: comp fun commute on def)
have "?lhs = (sumset o (A . A)) k (Finite Set.fold (sumset o (A . A)) {0} {..<k})"
unfolding sumset iterated def lessThan Suc
by (subst fold insert, auto)
also have "... = ?rhs"
by (simp add: sumset iterated def)
finally show ?thesis .
qed

lemma sumset iterated 2:
shows "sumset iterated A 2 = sumset A A"
by (simp add: eval nat numeral)

Ruzsa

Let U, V, W be finite subsets of an abelian group. Then |U||V-W| < |[U-V||U-W/|.

lemma Ruzsa triangle ineql:
assumes U: "finite U" "U G"
and V: "finite V" "V G"
and W: "finite W" "W C G"
shows "(card U) * card(differenceset V W) < card (differenceset U V) * card (differenceset U W)"

-
C

Pliinnecke-Ruzsa

Let A, B be finite subsets of an abelian group and suppose that |A + B| < K|A|.
Then |rB — sB| < K""*|A| for every r,s > 1.

theorem Pluennecke Ruzsa ineq:
assumes K: "card (sumset A B) < K * real (card A)"
and A: "finite A" "A C G" "A # {}"
and B: "finite B" "B C G"
and "0 < r" "Q@ < s"

shows "card (differenceset (sumset iterated B r) (sumset iterated B s)) < K*(r+s) * real(card A)"

Khovanskii

Let A be a finite subset of an abelian group. There exists a polynomial p4 and an
integer n4 such that px = [nA| for all n > n4.

theorem Khovanskii:
assumes "card A > 1"
defines "f = An. card(sumset iterated A n)"
obtains N p where "real polynomial function p" "An. n > N = real (f n) = p (real n)"

Khovanskii

Let us enumerate the elements of A as aq,...,a,. The iterated sumset nA is equal
to the set of all numbers of the form 2;1 a;xr; where x,, ..., x, are nonnegative
3 =) P r PP, —

integers so that) ._, x; = n.

We treat tuples as lists.

Required a development of a Product Operator for Commutative Monoids theory

(finite products in group theory) which was largely based on
HOL/Algebra/FiniteProduct.thy.

Khovanskii

lemma sumset iterated enum:
defines "

r = card A"
shows "sumset iterated A n = o« ° length sum set r n"
subsection <The set of all @{term r}-tuples that sum to @{term n}>
definition length sum set ::
where "length sum set r n
text

<The sum of the elements of a list>
abbreviation "o

"nat = nat = nat list set"
= {x. length x

=r A o X =

= n}"

= sum Llist"
definition @ :: "nat list = 'a"

where "a = Ax. fincomp (Ai. Gmult (aA'!i) (x!1i)) {..<card A}"
text <finite products of a group element>
definition Gmult ::

"'a = nat = 'a"
where "Gmult a n

= (((®)a) ** n) 0"

Khovanskii

subsection <The set of minimal elements of a set of r-tuples is finite»

text<«The following general finiteness claim corresponds to Lemma 2.8 in Gowers's notes and is key t
the main proof.>

lemma minimal elements set tuples finite:

assumes Ur: "Ax. x € U = length x = r
shows "finite (minimal elements U)"

inductive set minimal elements for U

where "[x € U; Ay. y € U = -y < x] = x € minimal _elements U"
definition pointwise le :: "[nat list, nat list] = bool" (infixr "<" 50)
where "x < y = list all2 (<) x y"

definition pointwise less :: "[nat list, nat list] = bool" (infixr "<" 50)
where "X <y =x dy A X # y"

Let S be a nonempty subset of an abelian group . The stabilizer or group of
periods of S istheset {zx € G : z+ 5 = S}.

definition stabilizer::"'a set = 'a set " where
"stabilizer S = {x € G. sumset {x} (SN G) =S N G}"

Kneser Let A, B be nonempty finite subsets of an abelian group G, let S = A + B and let
H be the stabilizer of S. We have |A+ B| > |A+ H|+ |B+ H| — |H|.

theorem Kneser:
assumes "A C G" and "B C G" and "finite A" and "finite B" and hAne: "A # {}" and hBne: "B # {}"
shows "card (sumset A B) > <card (sumset A (stabilizer (sumset A B))) +
card (sumset B (stabilizer (sumset A B))) - card (stabilizer (sumset A B))"

theorem Kneser strict: fixes A and B assumes "AC G" and "BC G" and "finite A" and "finite B"
and "stabilizer (sumset A B) = H" and "A # {}" and "B # {}"

assumes " card (sumset A B) < card A + card B"

shows " card (sumset A B) = card (sumset A H) + card (sumset B H)- card H"

Kneser

Induction on the cardinality of a finite set in an abelian group with the
Induction hypothesis applied to a finite set (of smaller cardinality) now in a
guotient group of the original abelian group.

Issue in formalisation: the quotient group and the original abelian group
have carrier sets of different types. Our induction argument needs to
generalise the types of the carrier sets of the abelian groups we are
considering.

Workaround solution: force the quotient group to live over the same type
as the original abelian group by using the coset representatives as the
group elements, and push all of the relevant information through this
Isomorphism. (thanks to Manuel Eberl via Zulip)

Cauchy-Davenport

Let p be a prime. Let A,B C Z, be nonempty sets. We have [A + B| >
min|A| + |B| - 1,p}.

theorem Cauchy Davenport:
fixes p :: nat
assumes "prime p" and "A # {}" and "B # {}" and "finite A" and "finite B" and
"A C {0..p-1}" and "B C {0..p-1}"
shows "card (Z p.sumset p A B) > Min {p, card A + card B -1}"

Note:

Mantas Baksys and Yaél Dillies later went on to formalise Kneser’s Theorem and the
Cauchy-Davenport Theorem in Lean too.
(Joint paper in progress to compare the formalisations).

* A formalisation of the Balog-Szemerédi-Gowers Theorem in Isabelle/HOL
(A. K.-A., Mantas Baksys & Chelsea Edmonds, in CPP '23: 12th ACM
SIGPLAN, International Conference on Certified Programs and Proofs).

A profound result in additive combinatorics which played a central role in

Gowers's proof deriving the first effective bounds for Szemerédi's Theorem
on arithmetic progressions.

Balog & Szemerédi (1994): Every finite subset of an abelian group of given
additive energy must contain a large subset whose sumset is small.

Gowers (2001): New proof with better bounds on the cardinalities.

Balog-Szemerédi-Gowers:

Let A be a finite subset of an abelian group. Suppose that A has additive en-

ergy 2c for some ¢ > 0. Then A has a subset A’ so that |A’| > ¢?|A|/4 and
|AI . A’| &z 230|A|/634.

theorem Balog Szemeredi Gowers: fixes A::"'a set" and c::real

assumes afin: "finite A" and "A # {}" and "c>0" and "additive energy A = 2 * c¢" and ass: "A C G"
obtains A' where "A' C A" and "card A' > ¢c”2 * card A / 4" and

"card (differenceset A' A') < 2730 * card A / c"34"

(Analogous version for sumsets).

The proof involves a fascinating interplay between graph theory,
probability theory, additive combinatorics: expressed via an
Implementation of locales, Isabelle’s module system.

Made use of a new, general undirected graph theory library by Edmonds.

Lemma 3.4

Technical Probability
Lemma

Lemma 3.3

Technical Probability
Lemma

e,

Lemma 3.1 Lemma 3.2

Lemma 3.6 Main

Graph Theoretic

Dependent Random Many walks of
BSG Theorem

Selection length 3

Algebrai
s N Lemma 3.5

WM Probabilistic | Technical Algebraic
B Graph Theoretic Lemma (diff pairs)

Preliminary Graph theoretic definitions

Definition (Density)

Given a bipartite graph G with finite vertex sets X, Y and edge set
E C X x Y define the density of G as §(G) = |E|/|X|| Y]

Definition (Neighbourhood)

Given a graph G = (V, E) we define the neighbourhood of z € V to
be N(z) ={y € V|zy € E}

Definition (Codegree)

Given a graph G = (V, E') we define the codegree of z,y € V as
the number of paths of length two for z to v in G or formally
codegree(z, y) = |N(z) N N(y)|

The Dependent Random Selection Method

Motivation : We want to find a large subset with better properties,
based on the structure of the original set

Lemma (3.1)

Given a bipartite graph G = (X U Y, E)
of density § > 0, for every ¢ > 0 we can
find X' C X such that | X'| > 6|X|//2
and the proportion of pairs

(z,2") € (X")? with

codegree(z, z') < c|Y| is at most 2c/ 5>

The Dependent Random Selection Method

Proof Sketch.

Instead of defining X’ randomly, define X’ by picking y € Y at random,
and let X’ = N(y). Now determine properties of X', e.g. the expected size
of X’ is average degree of y € Y. O

let ?M = "uniform count measure Y"
interpret P: prob_space 7M
by (simp add: Y not empty partitions finite prob_space uniform_count measure)
have sp: "space ™M = Y"
by (simp add: space _uniform_count measure)
(* First show that the expectation of the size of X' is the average degree of a vert
have avg degree: "P.expectation (A y . card (neighborhood y)) = density * (card X)"
proof -
have "density = (> .y € Y . degree y)/(card X * card Y)"
using edge size degree sumY density simp by simp
then have d: "density * (card X) = (3)y € Y . degree y)/(card Y)"
using card edges between set edge size degree sumY partitions finite(1l) partitio
have "P.expectation (A y . card (neighborhood y)) = P.expectation (\ y . degree y)
using alt deg neighborhood by simp
also have "... =()_ y € Y. degree y)/(card Y)" using P.expectation uniform count
by (simp add: partitions finite(2))
finally show ?thesis using d by simp
ged

Lemma 3.2

There are many paths of length 3 between vertices in subsets

Lemma (3.2)

Let G be a bipartite graph with finite vertex sets X and Y and density 6.
Then there are subsets X' C X and Y’ C Y with | X'| > §?|X|/16 and
|Y’| > 6|Y|/4 such that for every € X’ and y € Y’ the number of paths
of length 3 between x and y in G is at least §°| X || Y|/213.

lemma (in fin bipartite graph) walks of length 3 subsets bipartite:
obtains X' and Y' where "X' C X" and "Y' C Y" and
“card X' > (edge density X Y)”*2 * card X / 16" and
“card Y' > edge density XY * card Y / 4" and
"W x € X'. Vy e Y'. card {p. connecting walk x y p A walk length p = 3} >

(edge density X Y)™6 * card X * card Y / 2713"

Lemma 3.2

There are many paths of length 3 between vertices in subsets

o\ rY,
7 @ °
4‘,‘ ©
. |5
A o
® ®

X i

"Transporting" Information across proofs

Lemma 3.2 involves many different probability spaces (X2 C X)

... And several graph constructs

interpret H: fin_bipartite_graph ENZXINUSY)E S{SNCIE-NENCR(TXINCRY)SE SiX1E X5

let ?E loops = "mk edge = {(x, x') | x x'. x € X2 A x' € X2 A
(H.codegree normalized x x' Y) > ?6 ~ 3 / 128}"
interpret I': ulgraph "X2" "?E_loops"

We can transport information easily using locale definitions
have neighborhood unchanged: "V x € ?X1. neighbors ss x Y = H.neighbors ss x Y"
using neighbors ss def H.neighbors ss def vert adj def H.vert adj def by auto
then have degree unchanged: "V x € 7X1. degree x = H.degree x"
using H.degree_neighbors_ssX degree_neighbors_ssX by auto

Turning additive structure into graphs

Definition (6-popular difference)

Given an abelian group G and a finite subset A, define d € G to be
a 0-popular difference if |{(a, b) € A%|a — b = d}| > 0| A|

Idea: Finding large subsets B, C of A C G that contain many
unique paths of length 3 between them along popular differences
can give us upper bounds on the size of |C — B|.

The formal construction

Graph Construct

» Vertices: Let V = X U Y where
X and Y are copiesof A C G

» Edges: a;a; € E if and only if
a; — a; IS c-popular.
(This "glues” algebraand : need for a new
graph theory) graph theory

» Lemma 3.2 then gives large Iibrary with suf.

subsets with paths of length 3. b
Working in the additive abelian group context: abstract types
(Ch. Edmonds)
let ?X = "A x {0:: nat}"
let 7Y "A x {1l:: nat}"

let ?E = "mk edge ~ {(x, y)| xy. x € ?XX Ay € ?2Y A (popular diff (fst y & fst x) c A)}'
interpret H: fin bipartite graph "?X U ?Y" ?E ?X ?Y

e

To successfully use the introduced auxiliary graph by applying
Lemma 3.2, we will need to prove that it is reasonably dense, i.e.
that for many pairs (a;, a;) € A2, a; — a; is c-popular.

Lemma (3.5)

Let A be a finite subset of an abelian group G. Suppose A has
additive energy 2c. Then the number of c-popular differences
de A— Ais atleast c|A|.

Application of Lemma 3.2 to additive combinatorics

Lemma (3.6)

Let A be a finite subset of an abelian group G. Suppose A has
additive energy 2c for ¢ > 0. Then A has subsets B and C with
|B| > c*|A|/16 and |C| > c¢?|A|/4 such that |C — B| < 213¢719| A].

Proof Sketch:

» Create an auxiliary bipartite graph using copies of A and
c-popular differences.

» Apply Lemma 3.2 to the auxiliary graph to find Q(|4]?) paths of
length 3 between pairs (z,y) € B x C, i.e. pairs (z,w) € A?
such that z — z, 2 — w, w — y are all c-popular.

Application of Lemma 3.2 to additive combinatorics

Proof sketch (continued):

» For each such path zzwy in the auxiliary graph, we can find a
set of Q(|A|%) sextuples (p, ¢, 7, s, t, u) € A® such that
p—qQ=—2,T—8S=2z2—wW,t—u=w—1Y

» Each such set of sextuples is disjoint for distinct (z, w) € A?
and (further) distinct z — y. Hence we have found distinct
subjects of size Q(|A|°) in A% foreachz —y € B— C, so
B — C|= O(|4]).

theorem BALOG SZEmErediGoOWers: fixes A::"'a set” and c::real
assumes afin: "finite A" and "A # {}" and "c>0" and "additive energy A = 2 * ¢" and ass: "A C G"
obtains A' where "A' C A" and "card A' > c¢”2 * card A / 4" and
"card (differenceset A' A') < 2730 * card A / c*34"
proof-
obtain B and A' where bss: "B C A" and bne: "B # {}" and bge: “"card B > (c™4) * (card A)/16"
and a2ss: "A' C A" and a2ge: "card A' > (c”2) * (card (A))/4" (1)
and hcardle: "card {differenceset A' B) < 2°13 * card A f c~15"
using assms obtains subsets differenceset card bound by metis
have Bg0: “(card B :: real) > 0" using bne afin bss infinite super by fastforce
have "(card B) * card (differenceset A' A') <
card (differenceset A' B) * card (differenceset A' B)" 2
using afin a2ss bss infinite super ass Ruzsa triangle ineql card minusset' differenceset commute
sumset_subset_carrier subset_trans sumset commute by (smt (verit, best))
then have "card B * card (differenceset A' A') < (card (differenceset A' B))~2"
using bss bss power2 eq square by metis
then have "(card (differenceset A' A')) < (card (differenceset A' B))"2/card B"
using Bg® nonzero mult div cancel left[of "card B" "card(differenceset A' A'}"] 3
divide right mono by (smt (verit) of nat @ of nat mono real of nat div4)
moreover have "(card (differenceset A' B))"2 < ((2713) * (1/c"15)*(card A))"2"
using hcardle by simp
ultimately have "(card (differenceset A' A')) < ((2713) * (1/c~15)*(card A))"2/(card B)"
using pos le divide eq[OF Bg®] by simp
moreover have "(c”4) * (card A)/16 >@"
using assms card @ eq by fastforce
moreover have "((2713) * (1/c”15) * (card A))"2/(card B) =
((2~13)* (1/c”15)*(card A))"2 * (1/(card B))" by simp
moreover have "({(2*13)* (1/c*15) * (card A))})*2 * (1/(card B)) < L (4)
((2713) * (1/c”15) * (card A))*2/ ((c"4) * (card A)/16)"
using bge calculation(2, 3) frac le less eq real def zero le power2 by metis
ultimately have "(card (differenceset A' A')) < ((2713) * (1/c~15) * (card A))"2/ ((c™4) * (card A)/16)"
by linarith
then have "{card (differenceset A' A')) < (2730) * (card A)/(c"34)"
using card © eq assms by (simp add: power2 eq square)
then show ?thesis using a2ss a2ge that by blast
ged

Other recent formalisation work in additive number
theory by my students at Cambridge, following

Nathanson’s book

Melvyn B. Nathanson

Additive
Number Theory

The Classical Bases

Q%f Springer
T

- Ryan Shao: Part Il (i.e. MPhil)
Project in Advanced Computer
Science: “Formalisation of an Upper
Bound for the Easier Waring’s
Problem in Isabelle”, 2022-2023
(Honours Pass with Distinction).

- Jamie Chen: Part Il (i.e. 3" year)
“Formalising the Wieferich—Kempner
Theorem in Isabelle/HOL”, 2022-
2023.

...just completed (summer 2023):

Melvyn B. Nathanson

Additive
Number Theory

The Classical Bases

'.'\% Springer

- Kevin Lee and Zhengkun (Chris) Ye, Cambridge
Mathematics students (8-week internships with the
support of the Cambridge Mathematics Placement
(CMP) programme) formalised (versions of) the
Polygonal Number Theorem in Isabelle/HOL.

Easier Waring’s Problem

Is it true that every integer can be written as the sum or difference of a bounded
number of kth powers?

Let k > 2. There exists a smallest integer v(k) such that the equation
n= :I::I:‘if = i :Efj = ...:r:f(k}
has a solution in the integers for every integer n. In particular,
v(k) < 2571 4 k1/2

(It is still an unsolved problem, however, to determine the exact value of v(k) for
any k > 3).

Easier Waring’s Problem

definition waring sum :: "nat = waring term list = int" where

"waring sum k xs = fold (+) (map (Ay::waring term. fst(y) * fst(snd(y)) * snd(snd(y))”~(Suc k)
(xs::waring term list)) (O@::int)"

(>I<
waring count list: List containing the count component of all elements in a list of Waring term
*)
definition waring count list :: "waring term list = nat list" where
"waring count list 1 = map (Ay. fst(snd(y))) L"

(*

waring length: The total count in a list of Waring terms

*)

definition waring length :: "waring term list = nat" where
"waring length xs = fold (+) (waring count list xs) (0::nat)"

theorem warings:

assumes "k > 1"
obtains 1 where "(waring sum k 1) = n A waring length(l) < 2~k + fact(k + 1) div 2"

(about 1400 lines of code)

Easier Waring’s Problem

The forward difference operator Ay is the linear operator defined on a function
f by the formula

Ad(f)(z) = f(z +d) — f(z)

For [> 2 we define the iterated difference operator

ﬁd:,dr,—l,---,dl = ‘&d; 2 Adi—l,---,th = ﬂdt © Adi—l ©...0 Adl

Easier Waring’s Problem

(* delta: The difference operator function. ¥*)
definition delta :: "int = (int = int) = int = int"
where "delta k f x = f (x + k) - f x"

(* delta list: The iterated difference operator function. *)

primrec delta list :: "int list = (int = int) = int = int" where
"delta list (y # ys) f x = delta y (delta list ys f) x" |
"delta list [] f x=f x"

(* delta one: The iterated difference operator function applied on a list of 1ls. *)
definition delta one :: "nat = (int = int) = int = int"
where "delta one n f x = delta list (replicate n 1) f x"

lemma delta one inductive step:
"delta one (k + 1) f x = delta one k f (x + 1) - delta one k f x"
by (auto simp: delta one def delta def)

The Wieferich-Kempner Theorem

fun sumpow :: "nat = nat list = nat" where
"sumpow n 1 = fold (+) (map (Ax. x*n) 1) 0"

definition is sumpow :: "nat = nat = nat = bool"
where "is sumpow p n m = 4 1. length 1 = n A m = sumpow p 1"

theorem "Wieferich-Kempner":
fixes N :: nat
shows "is sumpow 3 9 N"

(about 1100 lines of code
BUT...)

The Wieferich-Kempner Theorem

locale LegendresThreeSquareTheorem =

assumes LegendresThreeSquareTheorem:
"V x::nat. (=(d abc. x=a"2+b"2 + c™2)) «— (ds t. x = 47°s*(8t + 7))"

Both the Wieferich—-Kempner Theorem and the Polygonal Number Theorem build
on Legendre’s Three Squares Theorem, which has been recently formalised in
Isabelle by Anton Danilkin and Loic Chevalier!

locale lemma4d =
assumes lemmad: "V n::nat < 40000. 1is sumpow 3 9 n A

(n ¢ {23, 239} — 1is sumpow 3 8 n) A

(n ¢ {23, 239, 15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428, 454
— 1s sumpow 3 7 n) A

(n > 8042 — 1s sumpow 3 6 n)"

Gauss

Cauchy

Legendre

The Polygonal Number Theorem

The kth polygonal number of order m + 2 is

Pm(k) = i it

5 +K.

Every nonnegative integer is the sum of three triangles.

If m>4and N > 108m, then N can be written as the sum of m + 1 polygo-
nal numbers of order m + 2, at most four of which are different from 0 or 1. If
N > 324, then N can be written as the sum of five pentagonal numbers, at least
one of which is 0 or 1.

Let m > 3 and N > 28m3. If m is odd, then N is the sum of four polygonal
numbers of order m + 2. If m is even, then N is the sum of five polygonal numbers
of order m + 2, at least one of which is 0 or 1.

The Polygonal Number Theorem

definition polygonal number :: "nat = nat = nat"
where "polygonal number m k = m*k*(k-1) div 2 + k"

Cauchy

theorem Strong Form of Cauchy Polygonal Number Theorem 1:
fixes m N :: nat
assumes "m>4"
assumes "N>108*m"
shows "d xs :: nat list. (length xs = m+1) A (sum list xs = N) A (Vk<3. da. xs! k = polygonal number m a)
AVke {4..m} . xs! k=0 VvV xs! k=1)"

theorem Strong Form of Cauchy Polygonal Number Theorem 2:

fixes N :: nat

assumes "N>324"

shows "3 pl p2 p3 p4 r ::nat. N = pl+p2+p3+p4+r A (3kl. pl = polygonal number 3 k1) A (3k2. p2 = polygonal number 3 k2)
A (3k3. p3 = polygonal number 3 k3) A (Jdk4. p4 = polygonal number 3 k4) A (r=0 Vv r = 1)"

Conclusion: Lessons learned

* Formalisation goals accomplished

* Still yet to encounter any material impossible to formalise in simple type
theory

* Advanced mathematics within reach

* Locales can be very useful (to capture interaction between different
mathematical areas and to “cheat” by including unformalised material as
assumptions)

* The formalisation process can reveal the need for a higher level of
abstraction in prerequisites (e.g. new graph theory library by Chelsea
Edmonds)

Conclusion: Lessons learned

* Sledgehammer’s automation is practical and efficient

* Students can learn Isabelle very fast and formalise advanced material
successfully

* Collaborative work, filling in library gaps

* We still need: better automation, efficient organisation and management of
libraries (definitions, elementary properties and basics, advanced results)

* Qur libraries can grow increasingly fast!

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

