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Background

Connections have come to light between the type theory used in
some proof systems (Coq, Agda, Lean, ...) and homotopy theory.

I. I will first sketch the basic connection between Martin-Löf’s
identity types and weak factorization systems.

II. Other type-theoretic ideas then lead to a Quillen model
category, forming a homotopical model of type theory.

III. Finally, I will show how to extract a strict model of type
theory from such a homotopical model.

Thierry’s lectures will describe the same constructions in the
language of type theory rather than category theory.



Martin-Löf Type Theory



Identity Types

Martin-Löf (1973) introduced the identity type, for terms a, b : X ,

IdX (a, b)

Its rules preserved the constructive character of the system of type
theory. But they also introduced some intensionality:

▶ terms a, b : X identified by p : IdX (a, b) may remain distinct,

▶ there may also be different p, q : IdX (a, b),

▶ is there always a term α : IdIdX (a,b)(p, q)?

This system is used in computer proof systems like Coq because of
its good computational properties, but its meaning was somewhat
mysterious ...



The Topological Interpretation: Simple Types

Church showed that a numerical function is definable in the
simply-typed λ-calculus just if it is computable.

Scott interpreted computability as continuity:

types ⇝ spaces

terms ⇝ continuous functions



The Homotopy Interpretation: Identity Types

We can extend the topological interpretation to identity types:

types X ⇝ spaces

terms t : X → Y ⇝ continuous functions

identities p : IdX (a, b) ⇝ paths p : a ∼ b

In topology, a path p : a ∼ b from point a to point b in a space X
is a continuous function

p : [0, 1] → X

with p(0) = a and p(1) = b.



The Homotopy Interpretation: Identity Types

The identity types endow each type X with higher structure.

a, b : X

p, q : IdX (a, b)

α, β : IdIdX (a,b)(p, q)

. . .

The higher identity terms are interpreted as homotopies:

X ⇝ space

a, b : X ⇝ points of X

p : IdX (a, b) ⇝ paths p : a ∼ b

α : IdIdX (a,b)(p, q) ⇝ homotopies α : p ≈ q

. . .



The Homotopy Interpretation: Type Dependency

The interpretation of identity terms as paths requires dependent
types to be interpreted as fibrations.

A family of types x : X ⊢ F (x) will be a bundle of spaces, i.e. a
continuous map:

x : X ⊢ F (x) ⇝
F

X



The Homotopy Interpretation: Type Dependency

The rules for identity types permit the inference:

p : IdX (a, b) c : F (a)

p ∗ c : F (b)

Logically, this just says the predicate F (x) respects identity:

IdX (a, b) & F (a) ⇒ F (b)

Topologically, it is the path lifting property of fibrations:

F

����

c // p ∗ c

X a p
// b



Definition: Weak Factorization System

A weak factorization system on a category consists of two
classes of maps (L,R) such that:

• every map factors as an L followed by an R,

A ��

L ��

f // B

C
R

?? ??

• every commutative square with an L and an R thus,

A��

L
��

// C

R
����

B //

j

??

D

has a diagonal filler j making it commute.



Basic HoTT: Identity Types

Theorem (A-Warren, 2006)

Martin-Löf’s rules for identity types interpret into any wfs.

Proof.

• Types Γ ⊢ X are interpreted as R-maps.

• Terms Γ ⊢ t : X are interpreted as sections.

• Factoring ∆ : X // X × X interprets Formation and Intro,

x , y : X ⊢ IdX (x , y) type x : X ⊢ refl(x) : IdX (x , x)

X

∆ ##

// refl // IdX

����

X × X



Basic HoTT: Identity Types

• Elimination assumes a commutative square of the form,

x : X ⊢ c(x) : C (x , x , refl(x))

X��

refl
��

c // C

����

IdX =
//

j

<<

IdX

The diagonal filler j is the Elim-term,

x , y : X , z : IdX (x , y) ⊢ j(x , y , z ; c) : C (x , y , z) .

• The upper triangle is the Computation rule,

c = j ◦ refl .



Univalent HoTT

Voevodsky added the Univalence Axiom to HoTT (in 2010)

Id(X ,Y ) ≃ (X ≃ Y )

and constructed a model in simplicial sets using the Quillen
model structure.



Definition: Quillen Model Structure

A Quillen model structure on a category E consists of three
classes of maps

(C,W,F)

such that:

(a) (C,W ∩F) and (C ∩W,F) are weak factorization systems,

(b) W has the 2-of-3 property:

A

f ��

g◦f
// C

B

g

??

if any 2 of the above arrows are in it, then all 3 are.



Homotopical Models of Type Theory

Definition
A model of HoTT in a topos E is:

i) a Quillen model structure (C,W,F):

(a) (C,W ∩F) and (C ∩W,F) are weak factorization systems,
(b) W has the 2-of-3 property,

ii) satisfying the Frobenius condition,

iii) with a univalent universe of fibrations U̇↠ U,

iv) such that U is a fibrant object.

Remark
We’ll see that condition (i b) follows from the others.



Part II



Cubical sets

As the category E we take the cubical sets

cSet = Set□
op
.

The cube category □ can be e.g. the dual of the finitely
generated free distributive lattices,

□op := DLatfgf .

□ is closed under finite products and contains a bipointed object,

[0]⇒ [1] .



The interval I

The interval 1 = y[0]⇒ y[1] = I in cSet provides, for every X :

▶ a cylinder
X + X ↣ I× X .

▶ a path object
X I ↠ X × X .



The interval I

The interval 1 + 1↣ I in cSet provides, for every object X :

▶ a cylinder

X + X ∼= (1 + 1)× X ↣ I× X .

▶ a path object

X I ↠ X (1+1) ∼= X × X .

Moreover I is tiny, (−)× I ⊣ (−)I ⊣ (−)I .



The Quillen Model Structure

The classes (C,W,F) can be described succinctly as:

• the cofibrations C are an axiomatized class of monos,

• the fibrations F are those f : Y → X for which the gap maps

(δ ⇒ f ) : Y I −→ X I ×X Y

lift on the right against all cofibrations,

• the weak equivalences W are then determined.
(They can be shown to be those f : X → Y for which
K f : KY → KX is bijective under π0 whenever K is fibrant.)



The Quillen Model Structure

The verification of the axioms proceeds in three steps

1. a classifier Φ ↪→ Ω for cofibrations is used to determine a
weak factorization system (C,TFib),

2. the interval 1⇒ I is then used to determine the fibrations
and a second weak factorization system (TCof,F),

3. the weak equivalences are defined by setting

W = TFib ◦ TCof,

and the 2-of-3 condition is shown by first constructing a
univalent universe U̇ → U.



1. The cofibration wfs (C,TFib)

The cofibrations C are the monos C ↣ D classified by t : 1↣ Φ.

C��

��

// 1��

t
��

// 1

��

D // Φ �
�

// Ω

The trivial fibrations TFib are the maps T ↠ X that lift against
the cofibrations.

C⋔ =: TFib

C��

��

// T

������

D //

??

X



1. The cofibration wfs (C,TFib)

Proposition

(C,TFib) is an algebraic weak factorization system.

Proof.
The classifier t : 1↣ Φ determines a fibered polynomial monad

Pt = Φ!t∗ : cSet // cSet

the algebras for which in cSet/X are the trivial fibrations.



2. The fibration wfs (TCof,F)

The fibrations F are defined in terms of the trivial fibrations by

(f : Y → X ) ∈ F iff (δ⇒ f ) ∈ TFib

for both gap maps δ⇒ f for the endpoints δ : 1 // I.

Y I

$$

δ⇒f

!!
��

·

��

// Y

f
��

X I // X

The trivial cofibrations TCof are the maps that lift against F .

TCof := ⋔F



3. The weak equivalences W

Proposition

Let W := TFib ◦ TCof. Then

TCof = W ∩ C
TFib = W ∩F

so (C,TFib) and (TCof,F) form a Barton premodel structure.

Corollary

If W satisfies 2-of-3, then (C,W,F) is a QMS.



3. The weak equivalences W

We show 2-of-3 for W using a universal fibration U̇↠ U.

(i) there is a universal small map V̇ → V,

(ii) U is the classifying type for fibration structures on V̇ → V,

(iii) U̇↠ U is univalent,

(iv) U is fibrant,

(v) fibrant U implies 2-of-3 for W.

The idea of getting a QMS from univalence is due to Sattler.



3(i). The universal small map V̇ → V

The category of elements functor
∫
C∫

C : Ĉ
((

Cat : νC
ii

always has a right adjoint nerve functor νC.

Proposition

For any small map Y → X in Ĉ there is a canonical pullback

Y

��

// νC ˙set
op

��

X // νC setop

since ˙set
op −→ setop classifies small discrete fibrations in Cat.



3(i). The universal small map V̇ → V

The category of elements functor
∫
C∫

C : Ĉ
((

Cat : νC
ii

always has a right adjoint nerve functor νC.

Proposition

For any small map Y −→ X in Ĉ there is a canonical pullback

Y

��

// νC ˙set
op

��

V̇

��

X // νC setop V

since ˙set
op → setop classifies small discrete fibrations in Cat.



3(ii). The universal fibration U̇↠ U

Proposition

There is a small fibration U̇↠ U such that every small fibration
A↠ X has a classifying map a : X → U fitting into a pullback

A

����

// U̇

����

X a
// U



3(ii). The universal fibration U̇↠ U

Definition
A universal fibration is a small fibration U̇↠ U such that every
small fibration A↠ X is a pullback of U̇↠ U along a classifying
map X → U.

A

����

// U̇

����

X // U

We will construct a universal fibration using the classifying type for
fibration structures.



3(ii). The universal fibration U̇↠ U

For any A → X there is a classifying type for fibration structures,

Fib(A) // X ,

sections of which correspond to fibration structures α on A → X .

A

��

Fib(A) // X

α

��

NB: Fib(A) → X is small when A → X is small.



3(ii). The universal fibration U̇↠ U

The map Fib(A) → X is stable under pullback,

f ∗Fib(A) ∼= Fib(f ∗A).

Thus the bottom square below is also a pullback.

f ∗A

��

// A

��

Y
f

// X

Fib(f ∗A)

OO

// Fib(A)

OO

The construction of Fib(A) uses the Frobenius condition, as well
as the root functor (−)I ⊣ (−)I. This is where we use the fact
that the interval I is tiny.



3(ii). The universal fibration U̇↠ U

Now let U be the type of fibration structures on V̇ → V,

U = Fib(V̇) // V.

Then define U̇ → U by pulling back the universal small map:

U̇

��

// V̇

��

U // V



3(ii). The universal fibration U̇↠ U

Since Fib(−) is stable under pullback, the lower square below is a
pullback.

U̇

��

// V̇

��

U //

��

V

Fib(U̇)

OO

// Fib(V̇)

OO

Since U = Fib(V̇), there is a section of Fib(U̇) (namely ∆U).

So U̇ → U is a fibration.



3(ii). The universal fibration U̇↠ U

A fibration structure α on a small map A → X then gives rise
to a factorization (a, α) of its classifying map a : X → V.

A

����

// V̇

��

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V



3(ii). The universal fibration U̇↠ U

A fibration structure α on a small map A → X gives rise to a
factorization (a, α) of its classifying map a : X → V,

A

��

//

""

V̇

��

U̇

��

<<

Fib(A)

""

// Fib(V̇)

""
X a

//
α

UU

(a,α)

<<

V

which then classifies it as a fibration, since Fib(V̇) = U.



3(ii). The universal fibration U̇↠ U in type theory

The type of fibration structures Fib(A) is an example of
type-theoretic thinking.

It can be constructed as the “type of proofs that A is a fibration”
using the propositions-as-types idea.

A fibration on X is then a pair (A, α) consisting of a small family
A : X → V together with a proof α : Fib(A) that A is a fibration.

The universal fibration U̇↠ U is therefore

U =
∑
A:V

Fib(A) ,

U̇ =
∑

(A,α):U

A .



3(iii). U̇↠ U is univalent

The universal fibration U̇↠ U is univalent if the type of (based)
equivalences Eq → U is a trivial fibration.

(Once we have the QMS this will imply

Id(A,B) ≃ Eq(A,B)

by the interpretation of IdU as the pathspace UI.)

That Eq → U is in TFib means it has the RLP against C:

C ′
��

��

A′≃B′
// Eq

��

C

A≃B

>>

B
// U



3(iii). U̇↠ U is univalent

Definition (EEP)

The equivalence extension property says that weak equivalences
extend along cofibrations C ′↣ C as follows: given fibrations
A′ ↠ C ′ and B ↠ C and a weak equivalence w ′ : A′ ≃ B ′,
where B ′ = C ′ ×C B,

A′

����

∼
w ′

  

// A

����

∼
w

��

B ′

~~~~

// B

����

C ′ // // C

there is a fibration A↠ C and a weak equivalence w : A ≃ B,
which pulls back to w ′.



3(iii). U̇↠ U is univalent

Voevodsky proved this for simplicial sets and Kan fibrations, to
give the following.

Theorem (Voevodsky)

There is a universal small Kan fibration U̇↠ U in simplicial sets
that is univalent.

Coquand later gave a constructive proof for cubical sets, using type
theoretic reasoning.

We have adapted Coquand’s proof to a new homotopical one that
holds in many QMCs (without using 2-of-3).



3(iv). U is fibrant

From univalence, we can show that the base object U is fibrant.

Theorem
The universe U is fibrant.

Voevodsky proved this directly for Kan simplicial sets using
minimal fibrations, which are specific to that setting.

Shulman gave a general proof from univalence, but it uses
2-of-3 for W, and so cannot be used here.

Coquand gave a proof from univalence that avoids 2-of-3, using
a type theoretic reduction of fibrancy to Kan composition.

We have a new general proof from univalence that avoids 2-of-3.



3(iv). U is fibrant

It suffices to show:

Proposition

The evaluation at an endpoint UI // U is a trivial fibration.

Proof.
We need to solve the following filling problem for any cofibration c .

C��

c

��

a // UI

Uδ

��

Z

??

b
// U



3(iv). U is fibrant

Transposing by I and using the classifying property of U gives the
following equivalent problem.

A0

��

����

// A

��

����

C��

c

��

C0

// C × I
��

c×I

��

B

����

// D

����

Z
Z0

// Z × I



3(iv). U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

A0 × I

wwww

��

C��

c

��

C0

// C × I
��

��

B

����

// D

����

B × I

wwww

Z
Z0

// Z × I



3(iv). U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C

c

��

C0

// C × I

��

B

����

// D

����

B × I

wwww

Z
Z0

// Z × I

There is a weak equivalence e : A
∼−→ A0 × I, to which we can

apply the EEP.



3(iv). U is fibrant

Now apply the functor (−)× I to the left face to get:

A0

��

����

// A

��

����

e
∼

// A0 × I

wwww

��

C

c

��

C0

// C × I

��

B

����

// D

����

∼
// B × I

wwww

Z
Z0

// Z × I

There is a weak equivalence e : A ≃ A0 × I, to which we can apply
the EEP. This produces the required fibration D ↠ Z × I.



3(v). From U fibrant to 2-of-3 for W

Finally, we can apply the following.

Proposition (Sattler)

The weak equivalences satisfy 2-of-3 if the fibrations extend
along the trivial cofibrations.

A

����

// A′

����

X // ∼
// X ′

This is called the fibration extension property.



3(v). From U fibrant to 2-of-3 for W

Lemma
Given a universal fibration U̇↠ U, the FEP holds if U is fibrant.

A

%%
����

// A′

������

X

%%

// ∼ // X ′

��

U̇

��

U



Danke!
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