Homotopical Semantics of Type Theory

Steve Awodey

Interactions of Proof Assistants and Mathematics
Regensburg, September 2023

Background

Connections have come to light between the type theory used in some proof systems (Coq, Agda, Lean, ...) and homotopy theory.
I. I will first sketch the basic connection between Martin-Löf's identity types and weak factorization systems.
II. Other type-theoretic ideas then lead to a Quillen model category, forming a homotopical model of type theory.
III. Finally, I will show how to extract a strict model of type theory from such a homotopical model.
Thierry's lectures will describe the same constructions in the language of type theory rather than category theory.

Martin-Löf Type Theory

Identity Types

Martin-Löf (1973) introduced the identity type, for terms $a, b: X$,

$$
\operatorname{ld}_{X}(a, b)
$$

Its rules preserved the constructive character of the system of type theory. But they also introduced some intensionality:

- terms $a, b: X$ identified by $p: \operatorname{ld}_{X}(a, b)$ may remain distinct,
- there may also be different $p, q: \operatorname{ld}_{X}(a, b)$,
- is there always a term $\alpha: \operatorname{ld}_{\operatorname{ld}_{x}(a, b)}(p, q)$?

This system is used in computer proof systems like Coq because of its good computational properties, but its meaning was somewhat mysterious ...

The Topological Interpretation: Simple Types

Church showed that a numerical function is definable in the simply-typed λ-calculus just if it is computable.

Scott interpreted computability as continuity:

types	\rightsquigarrow spaces
terms	\rightsquigarrow continuous functions

The Homotopy Interpretation: Identity Types

We can extend the topological interpretation to identity types:

$$
\begin{array}{rll}
\text { types } X & \rightsquigarrow & \text { spaces } \\
\text { terms } t: X \rightarrow Y & \rightsquigarrow & \text { continuous functions } \\
\text { identities } p: \operatorname{ld}_{X}(a, b) & \rightsquigarrow & \text { paths } p: a \sim b
\end{array}
$$

In topology, a path $p: a \sim b$ from point a to point b in a space X is a continuous function

$$
p:[0,1] \rightarrow X
$$

with $p(0)=a$ and $p(1)=b$.

The Homotopy Interpretation: Identity Types

The identity types endow each type X with higher structure.

$$
\begin{aligned}
& a, b: X \\
& p, q: \operatorname{ld}_{X}(a, b) \\
& \alpha, \beta: \operatorname{ld}_{\operatorname{ld}_{X}(a, b)}(p, q)
\end{aligned}
$$

The higher identity terms are interpreted as homotopies:

$$
\begin{aligned}
& X \rightsquigarrow \\
& \rightsquigarrow \text { space } \\
& a, b: X \rightsquigarrow \\
& p: \text { points of } X(a, b) \rightsquigarrow \\
& \text { paths } p: a \sim b \\
& \alpha: \operatorname{ld}_{\mathrm{Id}_{X}(a, b)}(p, q) \rightsquigarrow
\end{aligned}
$$

The Homotopy Interpretation: Type Dependency

The interpretation of identity terms as paths requires dependent types to be interpreted as fibrations.

A family of types $x: X \vdash F(x)$ will be a bundle of spaces, i.e. a continuous map:

$$
x: X \vdash F(x) \rightsquigarrow \underset{\sim}{\downarrow}
$$

The Homotopy Interpretation: Type Dependency

The rules for identity types permit the inference:

$$
\frac{p: \operatorname{ld}_{X}(a, b) \quad c: F(a)}{p * c: F(b)}
$$

Logically, this just says the predicate $F(x)$ respects identity:

$$
\operatorname{ld}_{X}(a, b) \& F(a) \Rightarrow F(b)
$$

Topologically, it is the path lifting property of fibrations:

$$
\begin{array}{ll}
F & c \cdots p * c \\
\underset{X}{ } & \\
& \\
\sim
\end{array}
$$

Definition: Weak Factorization System

A weak factorization system on a category consists of two classes of maps $(\mathcal{L}, \mathcal{R})$ such that:

- every map factors as an \mathcal{L} followed by an \mathcal{R},

- every commutative square with an \mathcal{L} and an \mathcal{R} thus,

has a diagonal filler j making it commute.

Basic HoTT: Identity Types

Theorem (A-Warren, 2006)
Martin-Löf's rules for identity types interpret into any wfs.
Proof.

- Types $\Gamma \vdash X$ are interpreted as \mathcal{R}-maps.
- Terms $\Gamma \vdash t: X$ are interpreted as sections.
- Factoring $\Delta: X \longrightarrow X \times X$ interprets Formation and Intro,

$$
x, y: X \vdash \operatorname{Id}_{X}(x, y) \text { type } \quad x: X \vdash \operatorname{refI}(x): \operatorname{Id}_{X}(x, x)
$$

Basic HoTT: Identity Types

- Elimination assumes a commutative square of the form,

$$
x: X \vdash c(x): C(x, x, \operatorname{refl}(x))
$$

The diagonal filler j is the Elim-term,

$$
x, y: X, z: \operatorname{Id}_{X}(x, y) \vdash j(x, y, z ; c): C(x, y, z)
$$

- The upper triangle is the Computation rule,

$$
c=j \circ \mathrm{refl} .
$$

Univalent HoTT

Voevodsky added the Univalence Axiom to HoTT (in 2010)

$$
\operatorname{ld}(X, Y) \simeq(X \simeq Y)
$$

and constructed a model in simplicial sets using the Quillen model structure.

Definition: Quillen Model Structure

A Quillen model structure on a category \mathcal{E} consists of three classes of maps

$$
(\mathcal{C}, \mathcal{W}, \mathcal{F})
$$

such that:
(a) $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are weak factorization systems,
(b) \mathcal{W} has the 2-of-3 property:

if any 2 of the above arrows are in it, then all 3 are.

Homotopical Models of Type Theory

Definition

A model of HoTT in a topos \mathcal{E} is:
i) a Quillen model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$:
(a) $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are weak factorization systems,
(b) \mathcal{W} has the 2-of-3 property,
ii) satisfying the Frobenius condition,
iii) with a univalent universe of fibrations $\dot{U} \rightarrow U$,
iv) such that U is a fibrant object.

Remark
We'll see that condition (ib) follows from the others.

Part II

Cubical sets

As the category \mathcal{E} we take the cubical sets

$$
\mathrm{cSet}=\text { Set }^{\square \circ \mathrm{p}}
$$

The cube category \square can be e.g. the dual of the finitely generated free distributive lattices,

$$
\square^{\mathrm{op}}:=\mathrm{DLat}_{f g f}
$$

\square is closed under finite products and contains a bipointed object,

$$
[0] \rightrightarrows[1] .
$$

The interval \mathbb{I}

The interval $1=\mathrm{y}[0] \rightrightarrows \mathrm{y}[1]=\mathbb{I}$ in cSet provides, for every X :

- a cylinder

$$
X+X \mapsto \mathbb{I} \times X
$$

- a path object

$$
X^{\mathbb{I}} \rightarrow X \times X
$$

The interval \mathbb{I}

The interval $1+1 \hookrightarrow \mathbb{I}$ in cSet provides, for every object X :

- a cylinder

$$
X+X \cong(1+1) \times X \mapsto \mathbb{I} \times X
$$

- a path object

$$
X^{\mathbb{I}} \rightarrow X^{(1+1)} \cong X \times X
$$

Moreover \mathbb{I} is tiny, $(-) \times \mathbb{I} \dashv(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$.

The Quillen Model Structure

The classes $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ can be described succinctly as:

- the cofibrations \mathcal{C} are an axiomatized class of monos,
- the fibrations \mathcal{F} are those $f: Y \rightarrow X$ for which the gap maps

$$
(\delta \Rightarrow f): Y^{\mathbb{I}} \longrightarrow X^{\mathbb{I}} \times{ }_{X} Y
$$

lift on the right against all cofibrations,

- the weak equivalences \mathcal{W} are then determined.
(They can be shown to be those $f: X \rightarrow Y$ for which $K^{f}: K^{Y} \rightarrow K^{X}$ is bijective under π_{0} whenever K is fibrant.)

The Quillen Model Structure

The verification of the axioms proceeds in three steps

1. a classifier $\Phi \hookrightarrow \Omega$ for cofibrations is used to determine a weak factorization system ($\mathcal{C}, \mathrm{TFib}$),
2. the interval $1 \rightrightarrows \mathbb{I}$ is then used to determine the fibrations and a second weak factorization system (TCof, \mathcal{F}),
3. the weak equivalences are defined by setting

$$
\mathcal{W}=\mathrm{TFib} \circ \mathrm{TCof}
$$

and the 2 -of- 3 condition is shown by first constructing a univalent universe $\dot{U} \rightarrow U$.

1. The cofibration wfs (\mathcal{C}, TFib)

The cofibrations \mathcal{C} are the monos $C \longmapsto D$ classified by $t: 1 \mapsto \Phi$.

The trivial fibrations TFib are the maps $T \rightarrow X$ that lift against the cofibrations.

$$
\mathcal{C}^{\pitchfork}=: \text { TFib }
$$

1. The cofibration wfs (\mathcal{C}, TFib)

Proposition

(C, TFib) is an algebraic weak factorization system.
Proof.
The classifier $t: 1 \hookrightarrow \Phi$ determines a fibered polynomial monad

$$
P_{t}=\Phi_{!} t_{*}: \mathrm{cSet} \longrightarrow \mathrm{cSet}
$$

the algebras for which in cSet/ x are the trivial fibrations.

2. The fibration wfs (TCof, $\mathcal{F})$

The fibrations \mathcal{F} are defined in terms of the trivial fibrations by

$$
(f: Y \rightarrow X) \in \mathcal{F} \quad \text { iff } \quad(\delta \Rightarrow f) \in \mathrm{TFib}
$$

for both gap maps $\delta \Rightarrow f$ for the endpoints $\delta: 1 \longrightarrow \mathbb{I}$.

The trivial cofibrations TCof are the maps that lift against \mathcal{F}.

$$
\text { TCof }:=\pitchfork \mathcal{F}
$$

3. The weak equivalences \mathcal{W}

Proposition
Let $\mathcal{W}:=$ TFib \circ TCof. Then

$$
\begin{aligned}
\text { TCof } & =\mathcal{W} \cap \mathcal{C} \\
\text { TFib } & =\mathcal{W} \cap \mathcal{F}
\end{aligned}
$$

so ($\mathcal{C}, \mathrm{TFib})$ and (TCof, \mathcal{F}) form a Barton premodel structure.
Corollary
If \mathcal{W} satisfies 2-of-3, then $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a $Q M S$.

3. The weak equivalences \mathcal{W}

We show 2-of-3 for \mathcal{W} using a universal fibration $\dot{U} \rightarrow U$.
(i) there is a universal small map $\dot{V} \rightarrow \mathrm{~V}$,
(ii) U is the classifying type for fibration structures on $\dot{V} \rightarrow V$,
(iii) $\dot{U} \rightarrow \mathrm{U}$ is univalent,
(iv) U is fibrant,
(v) fibrant U implies 2-of-3 for \mathcal{W}.

The idea of getting a QMS from univalence is due to Sattler.

3(i). The universal small map $\dot{V} \rightarrow \mathrm{~V}$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint nerve functor $\nu_{\mathbb{C}}$.
Proposition
For any small map $Y \rightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

since set ${ }^{\mathrm{op}} \longrightarrow$ set $^{\mathrm{op}}$ classifies small discrete fibrations in Cat.

3(i). The universal small map $\dot{V} \rightarrow \mathrm{~V}$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint nerve functor $\nu_{\mathbb{C}}$.
Proposition
For any small map $Y \longrightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

since set ${ }^{\mathrm{op}} \rightarrow$ set $^{\mathrm{op}}$ classifies small discrete fibrations in Cat.

3(ii). The universal fibration $\dot{U} \rightarrow U$

Proposition

There is a small fibration $\dot{U} \rightarrow \mathrm{U}$ such that every small fibration $A \rightarrow X$ has a classifying map a : X $\rightarrow \mathrm{U}$ fitting into a pullback

3(ii). The universal fibration $\dot{U} \rightarrow U$

Definition

A universal fibration is a small fibration $\dot{U} \rightarrow U$ such that every small fibration $A \rightarrow X$ is a pullback of $\dot{U} \rightarrow \mathrm{U}$ along a classifying map $X \rightarrow \mathbf{U}$.

We will construct a universal fibration using the classifying type for fibration structures.

3(ii). The universal fibration $\dot{U} \rightarrow U$

For any $A \rightarrow X$ there is a classifying type for fibration structures, $\operatorname{Fib}(A) \longrightarrow X$,
sections of which correspond to fibration structures α on $A \rightarrow X$.

$\mathrm{NB}: \operatorname{Fib}(A) \rightarrow X$ is small when $A \rightarrow X$ is small.

3(ii). The universal fibration $\dot{U} \rightarrow U$

The map $\operatorname{Fib}(A) \rightarrow X$ is stable under pullback,

$$
f^{*} \operatorname{Fib}(A) \cong \operatorname{Fib}\left(f^{*} A\right)
$$

Thus the bottom square below is also a pullback.

The construction of $\operatorname{Fib}(A)$ uses the Frobenius condition, as well as the root functor $(-)^{\mathbb{I}} \dashv(-)_{\mathbb{I}}$. This is where we use the fact that the interval \mathbb{I} is tiny.

3(ii). The universal fibration $\dot{U} \rightarrow U$

Now let U be the type of fibration structures on $\dot{\mathrm{V}} \rightarrow \mathrm{V}$,

$$
\mathrm{U}=\mathrm{Fib}(\dot{\mathrm{~V}}) \longrightarrow \mathrm{V}
$$

Then define $\dot{U} \rightarrow U$ by pulling back the universal small map:

3(ii). The universal fibration $\dot{U} \rightarrow U$

Since Fib(-) is stable under pullback, the lower square below is a pullback.

Since $U=\operatorname{Fib}(\dot{\mathrm{V}})$, there is a section of $\operatorname{Fib}(\dot{\mathrm{U}})$ (namely Δ_{U}).
So $\dot{U} \rightarrow U$ is a fibration.

3(ii). The universal fibration $\dot{U} \rightarrow U$

A fibration structure α on a small map $A \rightarrow X$ then gives rise to a factorization (a, α) of its classifying map $a: X \rightarrow \mathrm{~V}$.

3(ii). The universal fibration $\dot{U} \rightarrow U$

A fibration structure α on a small map $A \rightarrow X$ gives rise to a factorization (a, α) of its classifying map $a: X \rightarrow \mathrm{~V}$,

which then classifies it as a fibration, since $\operatorname{Fib}(\dot{\mathrm{V}})=\mathrm{U}$.

3(ii). The universal fibration $\dot{U} \rightarrow \mathrm{U}$ in type theory

The type of fibration structures $\operatorname{Fib}(A)$ is an example of type-theoretic thinking.

It can be constructed as the "type of proofs that A is a fibration" using the propositions-as-types idea.

A fibration on X is then a pair (A, α) consisting of a small family $A: X \rightarrow \mathrm{~V}$ together with a proof $\alpha: \operatorname{Fib}(A)$ that A is a fibration.

The universal fibration $\dot{U} \rightarrow \mathrm{U}$ is therefore

$$
\begin{aligned}
& \mathrm{U}=\sum_{A: V} \operatorname{Fib}(A), \\
& \dot{U}=\sum_{(A, \alpha): U} A
\end{aligned}
$$

3(iii). $\dot{U} \rightarrow U$ is univalent

The universal fibration $\dot{U} \rightarrow U$ is univalent if the type of (based) equivalences $\mathrm{Eq} \rightarrow \mathrm{U}$ is a trivial fibration.
(Once we have the QMS this will imply

$$
\operatorname{ld}(A, B) \simeq \operatorname{Eq}(A, B)
$$

by the interpretation of $I d_{U}$ as the pathspace $U^{\mathbb{I}}$.)
That $\mathrm{Eq} \rightarrow \mathrm{U}$ is in TFib means it has the RLP against \mathcal{C} :

3(iii). $\dot{U} \rightarrow U$ is univalent

Definition (EEP)

The equivalence extension property says that weak equivalences extend along cofibrations $C^{\prime} \longmapsto C$ as follows: given fibrations $A^{\prime} \rightarrow C^{\prime}$ and $B \rightarrow C$ and a weak equivalence $w^{\prime}: A^{\prime} \simeq B^{\prime}$, where $B^{\prime}=C^{\prime} \times{ }_{c} B$,

there is a fibration $A \rightarrow C$ and a weak equivalence $w: A \simeq B$, which pulls back to w^{\prime}.

3(iii). $\dot{U} \rightarrow U$ is univalent

Voevodsky proved this for simplicial sets and Kan fibrations, to give the following.
Theorem (Voevodsky)
There is a universal small Kan fibration $\dot{U} \rightarrow \mathrm{U}$ in simplicial sets that is univalent.

Coquand later gave a constructive proof for cubical sets, using type theoretic reasoning.

We have adapted Coquand's proof to a new homotopical one that holds in many QMCs (without using 2-of-3).

3(iv). U is fibrant

From univalence, we can show that the base object U is fibrant.
Theorem
The universe U is fibrant.
Voevodsky proved this directly for Kan simplicial sets using minimal fibrations, which are specific to that setting.

Shulman gave a general proof from univalence, but it uses 2-of-3 for \mathcal{W}, and so cannot be used here.

Coquand gave a proof from univalence that avoids 2-of-3, using a type theoretic reduction of fibrancy to Kan composition.

We have a new general proof from univalence that avoids 2-of-3.

3(iv). U is fibrant

It suffices to show:
Proposition
The evaluation at an endpoint $\mathrm{U}^{\mathbb{I}} \longrightarrow \mathrm{U}$ is a trivial fibration.
Proof.
We need to solve the following filling problem for any cofibration c.

3(iv). U is fibrant

Transposing by \mathbb{I} and using the classifying property of U gives the following equivalent problem.

3(iv). U is fibrant

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

3(iv). U is fibrant

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e: A \xrightarrow{\sim} A_{0} \times \mathbb{I}$, to which we can apply the EEP.

3(iv). U is fibrant

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e: A \simeq A_{0} \times \mathbb{I}$, to which we can apply the EEP. This produces the required fibration $D \rightarrow Z \times \mathbb{I}$.

$3(\mathrm{v})$. From U fibrant to 2 -of- 3 for \mathcal{W}

Finally, we can apply the following.

Proposition (Sattler)

The weak equivalences satisfy 2-of-3 if the fibrations extend along the trivial cofibrations.

This is called the fibration extension property.

$3(\mathrm{v})$. From U fibrant to 2 -of- 3 for \mathcal{W}

Lemma
Given a universal fibration $\dot{U} \rightarrow \mathrm{U}$, the FEP holds if U is fibrant.

Danke!

Some References

- S. Awodey. Cartesian cubical model categories. arXiv:2305.00893 (2023).
- S. Awodey, M. Warren. Homotopy theoretic models of identity types, Mathematical Proceedings of the Cambridge Philosophical Society (2009).
- M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets. TYPES 2014.
- C. Cohen, T. Coquand, S. Huber and A. Mörtberg. Cubical type theory: A constructive interpretation of the univalence axiom. TYPES 2015.
- C. Sattler. The Equivalence Extension Property and Model Structures. arXiv:1704.06911 (2017).
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study (2013).

