Homotopical Semantics of Type Theory

Steve Awodey

Interactions of Proof Assistants and Mathematics Regensburg, September 2023

Background

Connections have come to light between the **type theory** used in some proof systems (Coq, Agda, Lean, ...) and **homotopy theory**.

- I. I will first sketch the **basic connection** between Martin-Löf's identity types and weak factorization systems.
- II. Other type-theoretic ideas then lead to a Quillen model category, forming a **homotopical model of type theory**.
- III. Finally, I will show how to extract a **strict model of type theory** from such a homotopical model.

Thierry's lectures will describe the **same constructions** in the language of type theory rather than category theory.

Martin-Löf Type Theory

Identity Types

Martin-Löf (1973) introduced the *identity type*, for terms a, b : X,

 $\mathsf{Id}_X(a, b)$

Its rules preserved the constructive character of the system of type theory. But they also introduced some **intensionality**:

- terms a, b : X identified by $p : Id_X(a, b)$ may remain distinct,
- there may also be different $p, q : Id_X(a, b)$,
- is there always a term α : $Id_{Id_X(a,b)}(p,q)$?

This system is used in computer proof systems like **Coq** because of its good computational properties, but its meaning was somewhat mysterious ...

The Topological Interpretation: Simple Types

Church showed that a numerical function is *definable* in the simply-typed λ -calculus just if it is *computable*.

Scott interpreted computability as **continuity**:

types \rightsquigarrow spaces terms \rightsquigarrow continuous functions

The Homotopy Interpretation: Identity Types

We can extend the topological interpretation to identity types:

 $\begin{array}{rcl} \text{types } X & \rightsquigarrow & \text{spaces} \\ \text{terms } t: X \to Y & \rightsquigarrow & \text{continuous functions} \\ \text{identities } p: \operatorname{Id}_X(a,b) & \rightsquigarrow & \text{paths } p: a \sim b \end{array}$

In topology, a **path** $p : a \sim b$ from point a to point b in a space X is a continuous function

$$p:[0,1] \to X$$

with p(0) = a and p(1) = b.

The Homotopy Interpretation: Identity Types

The identity types endow each type X with **higher structure**.

$$\begin{array}{l} \textbf{a}, \textbf{b} : \textbf{X} \\ \textbf{p}, \textbf{q} : \mathsf{Id}_{X}(\textbf{a}, \textbf{b}) \\ \alpha, \beta : \mathsf{Id}_{\mathsf{Id}_{X}(\textbf{a}, \textbf{b})}(\textbf{p}, \textbf{q}) \end{array}$$

The higher identity terms are interpreted as **homotopies**:

. . .

. . .

$$\begin{array}{rcl} X & \rightsquigarrow & \text{space} \\ a, b : X & \rightsquigarrow & \text{points of } X \\ p : \text{Id}_X(a, b) & \rightsquigarrow & \text{paths } p : a \sim b \\ \alpha : \text{Id}_{\text{Id}_X(a, b)}(p, q) & \rightsquigarrow & \text{homotopies } \alpha : p \approx q \end{array}$$

The Homotopy Interpretation: Type Dependency

The interpretation of identity terms as *paths* requires dependent types to be interpreted as *fibrations*.

A family of types $x : X \vdash F(x)$ will be a **bundle of spaces**, i.e. a continuous map:

$$\begin{array}{ccc} x:X\vdash F(x) & \rightsquigarrow & & \downarrow\\ & & & \chi\end{array}$$

The Homotopy Interpretation: Type Dependency

The rules for identity types permit the inference:

$$\frac{p: \mathsf{Id}_X(a, b) \qquad c: F(a)}{p * c: F(b)}$$

Logically, this just says the predicate F(x) respects identity:

$$\operatorname{Id}_X(a,b) \& F(a) \Rightarrow F(b)$$

Topologically, it is the *path lifting property* of **fibrations**:

$$\begin{array}{cccc}
F & c & & & \\
\downarrow & & \\
\downarrow & & \\
X & a & & \\
& & p & b
\end{array}$$

Definition: Weak Factorization System

A weak factorization system on a category consists of two classes of maps $(\mathcal{L}, \mathcal{R})$ such that:

• every map factors as an $\mathcal L$ followed by an $\mathcal R$,

• every commutative square with an ${\cal L}$ and an ${\cal R}$ thus,

has a **diagonal filler** *j* making it commute.

Basic HoTT: Identity Types

Theorem (A-Warren, 2006)

Martin-Löf's rules for identity types interpret into any wfs.

Proof.

- Types $\Gamma \vdash X$ are interpreted as \mathcal{R} -maps.
- Terms $\Gamma \vdash t : X$ are interpreted as sections.
- Factoring $\Delta: X \longrightarrow X \times X$ interprets Formation and Intro,

 $x, y: X \vdash \mathsf{Id}_X(x, y)$ type $x: X \vdash \mathsf{refl}(x): \mathsf{Id}_X(x, x)$

Basic HoTT: Identity Types

• Elimination assumes a commutative square of the form,

 $x: X \vdash c(x): C(x, x, \operatorname{refl}(x))$

The diagonal filler j is the Elim-term,

$$x, y: X, z: \mathsf{Id}_X(x, y) \vdash j(x, y, z; c): C(x, y, z).$$

• The upper triangle is the Computation rule,

$$c = j \circ \text{refl}$$

Univalent HoTT

Voevodsky added the Univalence Axiom to HoTT (in 2010)

$$\mathsf{Id}(X,Y)\simeq (X\simeq Y)$$

and constructed a model in simplicial sets using the **Quillen model structure**.

Definition: Quillen Model Structure

A Quillen model structure on a category ${\mathcal E}$ consists of three classes of maps

 $(\mathcal{C},\mathcal{W},\mathcal{F})$

such that:

(a) $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are weak factorization systems, (b) \mathcal{W} has the 2-of-3 property:

if any 2 of the above arrows are in it, then all 3 are.

Homotopical Models of Type Theory

Definition

A model of HoTT in a topos ${\mathcal E}$ is:

- i) a Quillen model structure ($\mathcal{C},\mathcal{W},\mathcal{F}){:}$
 - (a) $(\mathcal{C},\mathcal{W}\cap\mathcal{F})$ and $(\mathcal{C}\cap\mathcal{W},\mathcal{F})$ are weak factorization systems,
 - (b) $\mathcal W$ has the 2-of-3 property,
- ii) satisfying the Frobenius condition,
- iii) with a **univalent universe** of fibrations $\dot{U} \twoheadrightarrow U$,
- iv) such that U is a fibrant object.

Remark

We'll see that condition (ib) follows from the others.

Part II

Cubical sets

As the category ${\mathcal E}$ we take the ${\mbox{cubical sets}}$

$$\mathsf{cSet} = \mathsf{Set}^{\square^{\mathrm{op}}}$$
.

The **cube category** \Box can be e.g. the dual of the finitely generated free distributive lattices,

 $\Box^{\mathsf{op}} := \mathsf{DLat}_{fgf}$.

 \Box is closed under finite products and contains a bipointed object,

 $[0] \rightrightarrows [1]$.

The interval $1 = y[0] \Rightarrow y[1] = \mathbb{I}$ in cSet provides, for every X:

> a cylinder

 $X + X \rightarrow \mathbb{I} \times X$.

> a path object

 $X^{\mathbb{I}} \twoheadrightarrow X \times X$.

The interval ${\mathbb I}$

The interval $1 + 1 \rightarrow \mathbb{I}$ in cSet provides, for every object *X*:

> a cylinder

$$X + X \cong (1+1) \times X \rightarrowtail \mathbb{I} \times X.$$

> a path object

$$X^{\mathbb{I}} \twoheadrightarrow X^{(1+1)} \cong X \times X$$
 .

Moreover $\mathbb I$ is tiny, $(-)\times\mathbb I\dashv (-)^{\mathbb I}\dashv (-)_{\mathbb I}$.

The Quillen Model Structure

The classes $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ can be described succinctly as:

- the cofibrations ${\mathcal C}$ are an axiomatized class of monos,
- the **fibrations** \mathcal{F} are those $f: Y \to X$ for which the *gap maps*

$$(\delta \Rightarrow f): Y^{\mathbb{I}} \longrightarrow X^{\mathbb{I}} \times_X Y$$

lift on the right against all cofibrations,

the weak equivalences W are then determined.
 (They can be shown to be those f : X → Y for which
 K^f : K^Y → K^X is bijective under π₀ whenever K is fibrant.)

The Quillen Model Structure

The verification of the axioms proceeds in three steps

- 1. a classifier $\Phi \hookrightarrow \Omega$ for **cofibrations** is used to determine a weak factorization system (C, TFib),
- 2. the interval $1 \rightrightarrows \mathbb{I}$ is then used to determine the **fibrations** and a second weak factorization system (TCof, \mathcal{F}),
- 3. the weak equivalences are defined by setting

 $\mathcal{W} = \mathsf{TFib} \circ \mathsf{TCof},$

and the 2-of-3 condition is shown by first constructing a univalent universe $\dot{U} \rightarrow U.$

1. The cofibration wfs (C, TFib)

The **cofibrations** C are the monos $C \rightarrow D$ classified by $t : 1 \rightarrow \Phi$.

The **trivial fibrations** TFib are the maps $T \rightarrow X$ that lift against the cofibrations.

$$\begin{array}{c}
\mathcal{C}^{\oplus} =: \mathsf{TFib} \\
 \downarrow & & \\
D \longrightarrow X
\end{array}$$

1. The cofibration wfs (C, TFib)

Proposition

 $(\mathcal{C}, \mathsf{TFib})$ is an algebraic weak factorization system.

Proof.

The classifier $t: 1 \rightarrow \Phi$ determines a fibered polynomial monad

$$P_t = \Phi_! t_* : \mathsf{cSet} \longrightarrow \mathsf{cSet}$$

the algebras for which in cSet/x are the trivial fibrations.

2. The fibration wfs $(TCof, \mathcal{F})$

The **fibrations** \mathcal{F} are defined in terms of the trivial fibrations by

$$(f: Y \to X) \in \mathcal{F}$$
 iff $(\delta \Rightarrow f) \in \mathsf{TFib}$

for both gap maps $\delta \Rightarrow f$ for the endpoints $\delta : 1 \longrightarrow \mathbb{I}$.

The **trivial cofibrations** TCof are the maps that lift against \mathcal{F} .

$$\mathsf{TCof} := {}^{\pitchfork}\mathcal{F}$$

3. The weak equivalences $\mathcal W$

Proposition Let $W := TFib \circ TCof$. Then $TCof = W \cap C$ $TFib = W \cap F$ so (C, TFib) and (TCof, F) form a Barton premodel structure. Corollary If W satisfies 2-of-3, then (C, W, F) is a QMS.

3. The weak equivalences $\ensuremath{\mathcal{W}}$

We show 2-of-3 for $\mathcal W$ using a **universal fibration** $\dot{U} \twoheadrightarrow U$.

- (i) there is a **universal small map** $\dot{V} \rightarrow V$,
- (ii) U is the **classifying type** for fibration structures on $\dot{V} \rightarrow V$, (iii) $\dot{U} \rightarrow U$ is **univalent**,
- (iv) U is fibrant,
- (v) fibrant U implies **2-of-3** for \mathcal{W} .

The idea of getting a QMS from univalence is due to Sattler.

3(i). The universal small map $\dot{V} \rightarrow V$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint **nerve** functor $\nu_{\mathbb{C}}$.

Proposition

For any small map Y o X in $\widehat{\mathbb{C}}$ there is a canonical pullback

since $set^{op} \longrightarrow set^{op}$ classifies small discrete fibrations in Cat.

3(i). The universal small map $\dot{V} \rightarrow V$

The category of elements functor $\int_{\mathbb{C}}$

always has a right adjoint **nerve** functor $\nu_{\mathbb{C}}$.

Proposition

For any small map $Y \longrightarrow X$ in $\widehat{\mathbb{C}}$ there is a canonical pullback

$$\begin{array}{ccc} Y \longrightarrow \nu_{\mathbb{C}} \operatorname{set}^{\operatorname{op}} = & \dot{\mathsf{V}} \\ \downarrow^{-} & \downarrow & \downarrow \\ X \longrightarrow \nu_{\mathbb{C}} \operatorname{set}^{\operatorname{op}} = & \mathsf{V} \end{array}$$

since set^{op} \rightarrow set^{op} classifies small discrete fibrations in Cat.

Proposition

There is a small fibration $\dot{U} \rightarrow U$ such that every small fibration $A \rightarrow X$ has a classifying map $a : X \rightarrow U$ fitting into a pullback

Definition

A universal fibration is a small fibration $\dot{U} \twoheadrightarrow U$ such that every small fibration $A \twoheadrightarrow X$ is a pullback of $\dot{U} \twoheadrightarrow U$ along a *classifying* map $X \to U$.

We will construct a universal fibration using the classifying type for fibration structures.

For any $A \rightarrow X$ there is a *classifying type for fibration structures*,

 $\operatorname{Fib}(A) \longrightarrow X$,

sections of which correspond to fibration structures α on $A \rightarrow X$.

NB: Fib(A) \rightarrow X is small when A \rightarrow X is small.

The map $Fib(A) \rightarrow X$ is stable under pullback,

 $f^*\operatorname{Fib}(A) \cong \operatorname{Fib}(f^*A).$

Thus the bottom square below is also a pullback.

The construction of Fib(A) uses the **Frobenius** condition, as well as the **root functor** $(-)^{\mathbb{I}} \dashv (-)_{\mathbb{I}}$. This is where we use the fact that the interval \mathbb{I} is **tiny**.

Now let U be the type of fibration structures on $\dot{V} \rightarrow V,$

$$U = Fib(\dot{V}) \longrightarrow V.$$

Then define $\dot{U} \rightarrow U$ by pulling back the universal small map:

Since Fib(-) is stable under pullback, the lower square below is a pullback.

Since $U = Fib(\dot{V})$, there is a section of $Fib(\dot{U})$ (namely Δ_U). So $\dot{U} \rightarrow U$ is a fibration.

A fibration structure α on a small map $A \rightarrow X$ then gives rise to a factorization (a, α) of its classifying map $a : X \rightarrow V$.

A fibration structure α on a small map $A \rightarrow X$ gives rise to a factorization (a, α) of its classifying map $a : X \rightarrow V$,

which then classifies it as a fibration, since $Fib(\dot{V}) = U$.

3(ii). The universal fibration $\dot{U} \rightarrow U$ in type theory

The type of fibration structures Fib(A) is an example of type-theoretic thinking.

It can be constructed as the "type of proofs that A is a fibration" using the **propositions-as-types** idea.

A fibration on X is then a pair (A, α) consisting of a small family $A: X \to V$ together with a **proof** $\alpha : Fib(A)$ that A is a fibration.

The universal fibration $\dot{U}\twoheadrightarrow U$ is therefore

$$U = \sum_{A:V} \operatorname{Fib}(A),$$

$$\dot{U} = \sum_{(A,\alpha):U} A.$$

3(iii). $\dot{U} \rightarrow U$ is univalent

The universal fibration $\dot{U} \twoheadrightarrow U$ is **univalent** if the type of (based) equivalences Eq $\rightarrow U$ is a trivial fibration.

(Once we have the QMS this will imply

 $\mathsf{Id}(A,B)\simeq\mathsf{Eq}(A,B)$

by the interpretation of Id_U as the pathspace $U^{\mathbb{I}}$.)

That Eq \rightarrow U is in TFib means it has the RLP against $\mathcal{C} {:}$

3(iii). $\dot{U} \rightarrow U$ is univalent

Definition (EEP)

The **equivalence extension property** says that weak equivalences extend along cofibrations $C' \rightarrow C$ as follows: given fibrations $A' \rightarrow C'$ and $B \rightarrow C$ and a weak equivalence $w' : A' \simeq B'$, where $B' = C' \times_C B$,

there is a fibration $A \twoheadrightarrow C$ and a weak equivalence $w : A \simeq B$, which pulls back to w'.

3(iii). $\dot{U} \rightarrow U$ is univalent

Voevodsky proved this for simplicial sets and Kan fibrations, to give the following.

Theorem (Voevodsky)

There is a universal small Kan fibration $\dot{U} \twoheadrightarrow U$ in simplicial sets that is univalent.

Coquand later gave a constructive proof for cubical sets, using type theoretic reasoning.

We have adapted Coquand's proof to a new homotopical one that holds in many QMCs (without using 2-of-3).

From univalence, we can show that the base object U is fibrant.

Theorem

The universe U is fibrant.

Voevodsky proved this directly for Kan simplicial sets using *minimal fibrations*, which are specific to that setting.

Shulman gave a general proof from univalence, but it uses 2-of-3 for \mathcal{W} , and so cannot be used here.

Coquand gave a proof from univalence that avoids 2-of-3, using a type theoretic reduction of fibrancy to *Kan composition*.

We have a new general proof from univalence that avoids 2-of-3.

It suffices to show:

Proposition

The evaluation at an endpoint $U^{\mathbb{I}} \longrightarrow U$ is a trivial fibration.

Proof.

We need to solve the following filling problem for any cofibration c.

Transposing by ${\mathbb I}$ and using the classifying property of U gives the following equivalent problem.

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e : A \xrightarrow{\sim} A_0 \times \mathbb{I}$, to which we can apply the EEP.

Now apply the functor $(-) \times \mathbb{I}$ to the left face to get:

There is a weak equivalence $e : A \simeq A_0 \times \mathbb{I}$, to which we can apply the EEP. This produces the required fibration $D \twoheadrightarrow Z \times \mathbb{I}$.

3(v). From U fibrant to 2-of-3 for $\mathcal W$

Finally, we can apply the following.

Proposition (Sattler)

The weak equivalences satisfy 2-of-3 if the fibrations extend along the trivial cofibrations.

This is called the fibration extension property.

3(v). From U fibrant to 2-of-3 for \mathcal{W}

Lemma

Given a universal fibration $\dot{U} \rightarrow U$, the FEP holds if U is fibrant.

Danke!

Some References

- S. Awodey. Cartesian cubical model categories. arXiv:2305.00893 (2023).
- S. Awodey, M. Warren. Homotopy theoretic models of identity types, Mathematical Proceedings of the Cambridge Philosophical Society (2009).
- M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets. TYPES 2014.
- C. Cohen, T. Coquand, S. Huber and A. Mörtberg. Cubical type theory: A constructive interpretation of the univalence axiom. TYPES 2015.
- C. Sattler. The Equivalence Extension Property and Model Structures. arXiv:1704.06911 (2017).
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study (2013).