Algebraic Type Theory

Steve Awodey

Interactions of Proof Assistants and Mathematics Regensburg, September 2023

Outline

- 1. Strictifying Homotopical Models
- 2. Natural Models of Type Theory
- 3. Some Type Formers
- 4. A Polynomial Monad

1. Strictifying Homotopical Models

- A homotopical model of (homotopy) type theory was defined to be a Quillen model category *E*, with the Frobenius property and a fibrant, univalent universe U → U.
- We can extract a **strict model** of (homotopy) type theory from a homotopical one using some ideas of Voevodsky and Lumsdaine-Warren.
- The resulting structure is a **category with families**, which is a quite strict notion of a model of dependent type theory. (A related construction gives a **contextual category**.)
- I will do the cases of Σ and Π types, but one can add the Id-types and a universe U.

1. Dependent type theory

The system to be modelled has:

Basic types and terms: $A, B, \ldots, x:A, b:B, \ldots$ Dependent types and terms: $x:A \vdash b(x):B(x), \ldots$ Contexts: $(x:A, y:B(x), \ldots), \Gamma, \Delta, \ldots$ Substitutions: $\sigma: \Delta \to \Gamma, \ldots$ Type forming operations: $\sum_{x:A} B(x), \prod_{x:A} B(x), \ldots$ Equations between terms: $\Gamma \vdash s = t: A$ 1. Dependent type theory: Rules

Contexts:

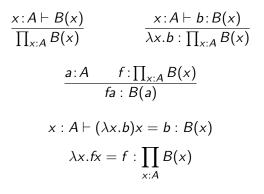
$$\frac{x:A \vdash B(x)}{x:A, y:B(x) \vdash} \qquad \frac{\Gamma \vdash C}{\Gamma, z:C \vdash}$$

Sums:

$$\frac{x:A \vdash B(x)}{\sum_{x:A} B(x)} \qquad \frac{a:A \quad b:B(a)}{\langle a, b \rangle : \sum_{x:A} B(x)}$$
$$\frac{c:\sum_{x:A} B(x)}{\text{fst } c:A} \qquad \frac{c:\sum_{x:A} B(x)}{\text{snd } c:B(\text{fst } c)}$$
$$\text{fst}\langle a, b \rangle = a:A \qquad \text{snd}\langle a, b \rangle = b:B$$
$$\langle \text{fst } c, \text{snd } c \rangle = c:\sum_{x:A} B(x)$$

1. Dependent type theory: Rules

Products:



Substitution:

$$\frac{\sigma: \Delta \to \Gamma \qquad \Gamma \vdash a: A}{\Delta \vdash a[\sigma]: A[\sigma]}$$

2. Natural Models of Type Theory

Definition

A natural transformation $f : Y \to X$ of presheaves on a category \mathbb{C} is called **representable** if its pullback along any $yC \to X$ is represented:

Proposition

A representable natural transformation is the same thing as a **category with families** in the sense of Dybjer.

Write the objects and arrows of \mathbb{C} as $\sigma : \Delta \to \Gamma$, giving the category of contexts and substitutions.

A CwF is usually defined as a presheaf of types in context,

 $\mathsf{Ty}: \mathbb{C}^{\mathrm{op}} \to \mathsf{Set}\,,$

together with a presheaf of typed terms,

$$\mathsf{T}\mathsf{m}:(\int_{\mathbb{C}}\mathsf{T}\mathsf{y})^{\mathrm{op}} o\mathsf{Set}\,.$$

But we will reformulate this notion using the equivalence

$$\mathsf{Set}^{\left(\int_{\mathbb{C}} \mathsf{T} y\right)^{\mathrm{op}}} \ \simeq \ \mathsf{Set}^{\mathbb{C}^{\mathrm{op}}} / \mathsf{T} y \, .$$

So we will instead have a map $p : \mathsf{Tm} \to \mathsf{Ty}$.

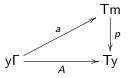
Let $p : \mathsf{Tm} \to \mathsf{Ty}$ be a **representable** map of presheaves on \mathbb{C} .

Then Ty is again the **presheaf of types in context**, and now Tm is the **presheaf of terms in context**, and p gives the **typing of terms**.

Formally, we interpret:

$$\Gamma \vdash A \quad \approx \quad A \in \mathsf{Ty}(\Gamma)$$
$$\Gamma \vdash a : A \quad \approx \quad a \in \mathsf{Tm}(\Gamma)$$

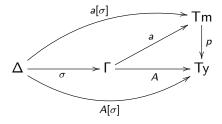
where $A = p \circ a$.



NB: we will now just write Γ rather than $y\Gamma$ for the representables.

Naturality of $p : Tm \rightarrow Ty$ means that for any **substitution** $\sigma : \Delta \rightarrow \Gamma$, we have the required action on types and terms:

$$\begin{array}{ll} \Gamma \vdash A & \Rightarrow & \Delta \vdash A[\sigma] \\ \Gamma \vdash a : A & \Rightarrow & \Delta \vdash a[\sigma] : A[\sigma] \end{array}$$



Given any further $\tau:\Delta'\to\Delta$ we clearly have

$$A[\sigma][\tau] = A[\sigma \circ \tau] \qquad \qquad a[\sigma][\tau] = a[\sigma \circ \tau]$$

and for the identity substitution $1:\Gamma\to\Gamma$ we have

$$A[1] = A \qquad a[1] = a$$

This is the **basic structure** of a CwF.

The remaining operation of context extension

$$\frac{\Gamma \vdash A}{\Gamma, x : A \vdash}$$

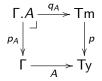
is given by the representability of $p : \mathsf{Tm} \to \mathsf{Ty}$ as follows.

2. Natural Models: Context Extension

Given $\Gamma \vdash A$ we need a new context $\Gamma.A$ together with a substitution $p_A : \Gamma.A \rightarrow A$ and a term

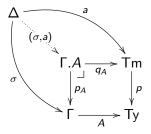
$$\Gamma.A \vdash q_A : A[p_A].$$

Let $p_A : \Gamma . A \to \Gamma$ be the pullback of p along A.



The map $q_A : \Gamma.A \to \mathsf{Tm}$ gives the required term $\Gamma.A \vdash q_A : A[p_A]$.

2. Natural Models: Context Extension



The pullback means that given any substitution $\sigma : \Delta \to \Gamma$ and term $\Delta \vdash a : A[\sigma]$ there is a map

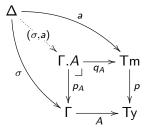
$$(\sigma, a): \Delta \to \Gamma.A$$

satisfying

$$p_A(\sigma, a) = \sigma$$

 $q_A[\sigma, a] = a.$

2. Natural Models: Context Extension



By the uniqueness of (σ, a) , we also have

$$(\sigma, a) \circ au \ = \ (\sigma \circ au, a[au]) \qquad ext{for any } au : \Delta' o \Delta$$

and

$$(p_A,q_A)=1.$$

These are precisely the **laws of a CwF**, under the equivalence

$$\mathsf{Set}^{\left(\int_{\mathbb{C}}\mathsf{Ty}
ight)^{\mathrm{op}}}\simeq\,\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}}\!/\mathsf{Ty}$$

2. Natural Models and Clans

Let $p: \dot{U} \rightarrow U$ be a natural model.

The fibration $\mathcal{F}_p
ightarrow \mathbb{C}$ of all pullbacks of p

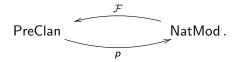
$$A^*p: \Gamma.A \to \Gamma$$
 for all $A: \Gamma \to U$

form a **display map category** (=: **pre-clan**).

Conversely, given any pre-clan (\mathbb{C}, \mathcal{F}), there is a natural model $p_{\mathcal{F}} : \dot{U}_{\mathcal{F}} \to U_{\mathcal{F}}$ over \mathbb{C} ,

$$p_{\mathcal{F}} = \prod_{f \in \mathcal{F}} \mathrm{y}f : \prod_{f \in \mathcal{F}} \mathrm{ydom}(f) \to \prod_{f \in \mathcal{F}} \mathrm{ycod}(f).$$

There is an adjunction $p \dashv \mathcal{F}$



2. Natural Models and Initiality

- The notion of a natural model is **essentially algebraic** (generalized algebraic, dependently typed algebraic, clan algebraic, finite limit theory, ...).
- The algebraic homomorphisms correspond exactly to syntactic translations.
- There are **initial algebras**, as well as **free algebras** over basic types and terms.
- The rules of type theory can be seen as a procedure for **generating the free algebras**.

3. Modeling the Type Formers

A natural model $p : \dot{U} \rightarrow U$ determines a **polynomial endofunctor**

$$P:\mathsf{Set}^{\mathbb{C}^{\mathsf{op}}}\to\mathsf{Set}^{\mathbb{C}^{\mathsf{op}}},$$

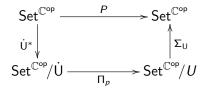
defined for every $X: \mathbb{C}^{\mathrm{op}} \to \mathsf{Set}$ by

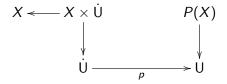
$$P(X) = \sum_{A:U} X^{[A]},$$

where $[A] = p^{-1}(A)$ is the fiber of $p : \dot{U} \to U$ at A : U.

3. Modeling the Type Formers: Polynomials

The construction of P(X) can be described as follows.

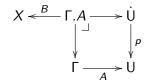




3. Modeling the Type Formers

Lemma (UMP of polynomials)

Maps $\Gamma \to P(X)$ correspond naturally to pairs (A, B) where:

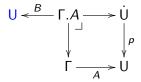


3. Modeling the Type Formers

Applying P to U itself therefore gives an object

$$P(\mathsf{U}) = \sum_{A:\mathsf{U}} \mathsf{U}^{[A]}$$

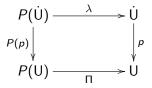
such that maps $\Gamma \to P(U)$ correspond naturally to **types in an** extended context $\Gamma.A \vdash B$



3. Modeling the Type Formers: Π

Proposition

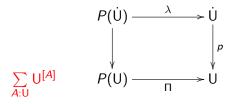
A natural model $p: \dot{U} \to U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback.



3. Modeling the Type Formers: Π

Proposition

A natural model $p: U \to U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback. *Proof:*

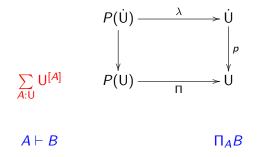


3. Modeling the Type Formers: Π

Proposition

A natural model $p : \dot{U} \to U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback.

Proof:

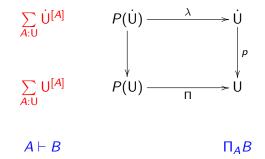


3. Modeling the Type Formers: $\boldsymbol{\Pi}$

Proposition

A natural model $p: \dot{U} \rightarrow U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback. *Proof:*

$$A \vdash b : B$$
 $\lambda_A b$

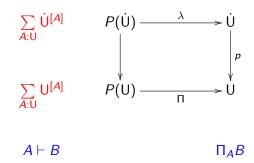


3. Modeling the Type Formers: $\boldsymbol{\Pi}$

Proposition

A natural model $p: \dot{U} \rightarrow U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback. **Proof:**

f



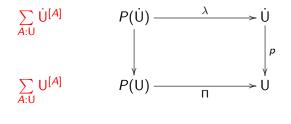
3. Modeling the Type Formers: $\boldsymbol{\Pi}$

Proposition

.

A natural model $p : \dot{U} \rightarrow U$ models the rules for Π -types just if there are maps λ, Π making the following a pullback. **Proof:**

$$A \vdash f(x) : B$$
 $\lambda_A f(x) = f$



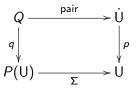
 $A \vdash B$

 $\Pi_A B$

3. Modeling the Type Formers: $\boldsymbol{\Sigma}$

Proposition

A natural model $p: U \to U$ models the rules for Σ -types just if there are maps (pair, Σ) making the following a pullback



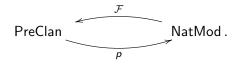
where $q: Q \rightarrow P(U)$ is the polynomial composition $P_q = P \circ P$. Explicitly:

$$Q = \sum_{A:U} \sum_{B:U^A} \sum_{x:A} B(x)$$

3. Modeling the Type Formers: Strictification

Theorem

Given any Π -tribe $(\mathbb{C}, \mathcal{F})$, for example a Quillen model category with the Frobenius property, the associated natural model $p_{\mathcal{F}}: \dot{U}_{\mathcal{F}} \to U_{\mathcal{F}}$ under the adjunction



has Σ and Π types (as well as Id-types).

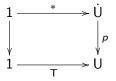
The natural model $p_{\mathcal{F}}: \dot{U}_{\mathcal{F}} \to U_{\mathcal{F}}$ is thus a **strictification** of the homotopical model $(\mathbb{C}, \mathcal{F})$.

Consider the rules for a terminal type T.

$$\vdash \mathsf{T}$$
 $\vdash *:\mathsf{T}$ $\overline{x:\mathsf{T}}\vdash x=*:\mathsf{T}$

Proposition

A natural model $p : \dot{U} \to U$ models the rules for a terminal type just if there are maps (*,T) making the following a pullback.



Consider the pullback squares for T and Σ .



These determine cartesian natural transformations between the corresponding polynomial endofunctors.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

Theorem (A-Newstead)

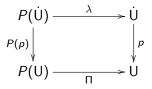
A natural model $p : \dot{U} \to U$ models T and Σ types just if the associated polynomial endofunctor P has the structure of a cartesian monad.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

The monad laws correspond to the following type isomorphisms.

$\sigma \circ P\sigma = \sigma \circ \sigma_P$	$\sum_{a:A} \sum_{b:B(a)} C(a,b) \cong \sum_{\substack{(a,b):\sum_{a:A} B(a)}} C(a,b)$
$\sigma\circ P\tau=1$	$\sum_{a:A} 1 \cong A$
$\sigma\circ\tau_{P}=1$	$\sum_{x:1} A \cong A$

The pullback square for Π



determines a cartesian natural transformation

$$\pi: P^2(p) \Rightarrow p$$

where $P^2: \hat{\mathbb{C}}^2 \to \hat{\mathbb{C}}^2$ is the lift of P to the arrow category $\hat{\mathbb{C}}^2$.

So a natural model $p: U \to U$ models Π types just if it has an **algebra structure** for the lifted endofunctor P^2 .

$$\pi:\mathsf{P}^2(\mathsf{p})\Rightarrow\mathsf{p}$$

The algebra laws correspond to the following type isomorphisms.

$$\pi \circ P\pi = \pi \circ \sigma \qquad \prod_{a:A} \prod_{b:B(a)} C(a,b) \cong \prod_{\substack{(a,b): \sum_{a:A} B(a)}} C(a,b)$$
$$\pi \circ \tau = 1 \qquad \qquad \prod_{x:1} A \cong A$$

Summary: Strictification

Theorem

A homotopical model of (homotopy) type theory gives rise to a natural model $p:\dot{U}\to U$ which

(i) presents a polynomial monad, and an algebra for it, and (ii) strictly models the Π, Σ and ld type formers.

References

- 1. Awodey, S. (2023) Algebraic type theory, HoTT 2023.
- Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- Awodey, S. and C. Newstead (2018) Polynomial pseudomonads and dependent type theory. arXiv:1802.00997
- Bezem, M., T. Coquand, P. Dybjer, and M. Escardó (2021). On generalized algebraic theories and categories with families. Mathematical Structures in Computer Science, 31(9).
- Newstead, C. (2018) Algebraic Models of Dependent Type Theory, CMU PhD thesis. arXiv:2103.06155