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1. Strictifying Homotopical Models

• A homotopical model of (homotopy) type theory was
defined to be a Quillen model category E , with the Frobenius
property and a fibrant, univalent universe U̇ ↠ U.

• We can extract a strict model of (homotopy) type theory
from a homotopical one using some ideas of Voevodsky and
Lumsdaine-Warren.

• The resulting structure is a category with families, which is
a quite strict notion of a model of dependent type theory. (A
related construction gives a contextual category.)

• I will do the cases of Σ and Π types, but one can add the
Id-types and a universe U.



1. Dependent type theory

The system to be modelled has:

Basic types and terms: A,B, . . . , x :A, b :B, . . .

Dependent types and terms: x :A ⊢ b(x) : B(x), . . .

Contexts: (x :A, y :B(x), . . .), Γ, ∆, . . .

Substitutions: σ :∆ → Γ , . . .

Type forming operations:
∑

x :A B(x),
∏

x :A B(x), . . .

Equations between terms: Γ ⊢ s = t : A



1. Dependent type theory: Rules

Contexts:

x :A ⊢ B(x)

x :A, y :B(x) ⊢
Γ ⊢ C

Γ, z :C ⊢

Sums:

x :A ⊢ B(x)∑
x :A B(x)

a :A b :B(a)

⟨a, b⟩ :
∑

x :A B(x)

c :
∑

x :A B(x)

fst c : A

c :
∑

x :A B(x)

snd c : B(fst c)

fst⟨a, b⟩ = a : A snd⟨a, b⟩ = b : B

⟨fst c , snd c⟩ = c :
∑
x :A

B(x)



1. Dependent type theory: Rules

Products:

x :A ⊢ B(x)∏
x :A B(x)

x :A ⊢ b :B(x)

λx .b :
∏

x :A B(x)

a :A f :
∏

x :A B(x)

fa : B(a)

x : A ⊢ (λx .b)x = b : B(x)

λx .fx = f :
∏
x :A

B(x)

Substitution:
σ : ∆ → Γ Γ ⊢ a : A

∆ ⊢ a[σ] : A[σ]



2. Natural Models of Type Theory

Definition
A natural transformation f : Y → X of presheaves on a category C
is called representable if its pullback along any yC → X is
represented:

yD

��

// Y

f
��

yC // X

Proposition

A representable natural transformation is the same thing as a
category with families in the sense of Dybjer.



2. Natural Models as CwFs

Write the objects and arrows of C as σ : ∆ → Γ, giving the
category of contexts and substitutions.

A CwF is usually defined as a presheaf of types in context,

Ty : Cop → Set ,

together with a presheaf of typed terms,

Tm : (
∫
C Ty)op → Set .

But we will reformulate this notion using the equivalence

Set(
∫
C Ty)op ≃ SetC

op
/Ty .

So we will instead have a map p : Tm → Ty.



2. Natural Models as CwFs

Let p : Tm → Ty be a representable map of presheaves on C.

Then Ty is again the presheaf of types in context, and now
Tm is the presheaf of terms in context, and p gives the typing
of terms.

Formally, we interpret:

Γ ⊢ A ≈ A ∈ Ty(Γ)

Γ ⊢ a : A ≈ a ∈ Tm(Γ)

where A = p ◦ a.
Tm

p

��
yΓ

a

77

A
// Ty

NB: we will now just write Γ rather than yΓ for the representables.



2. Natural Models as CwFs

Naturality of p : Tm → Ty means that for any substitution
σ : ∆ → Γ, we have the required action on types and terms:

Γ ⊢ A ⇒ ∆ ⊢ A[σ]

Γ ⊢ a : A ⇒ ∆ ⊢ a[σ] : A[σ]

Tm

p

��
∆ σ

//

A[σ]

99

a[σ] --

Γ

a

88

A
// Ty



2. Natural Models as CwFs

Given any further τ : ∆′ → ∆ we clearly have

A[σ][τ ] = A[σ ◦ τ ] a[σ][τ ] = a[σ ◦ τ ]

and for the identity substitution 1 : Γ → Γ we have

A[1] = A a[1] = a .

This is the basic structure of a CwF.

The remaining operation of context extension

Γ ⊢ A

Γ, x :A ⊢

is given by the representability of p : Tm → Ty as follows.



2. Natural Models: Context Extension

Given Γ ⊢ A we need a new context Γ.A together with a
substitution pA : Γ.A → A and a term

Γ.A ⊢ qA : A[pA] .

Let pA : Γ.A → Γ be the pullback of p along A.

Γ.A

pA
��

qA // Tm

p

��
Γ

A
// Ty

The map qA : Γ.A → Tm gives the required term Γ.A ⊢ qA : A[pA].



2. Natural Models: Context Extension

∆

σ

((

(σ,a)
!!

a

��
Γ.A

pA
��

qA
// Tm

p

��
Γ

A
// Ty

The pullback means that given any substitution σ : ∆ → Γ and
term ∆ ⊢ a : A[σ] there is a map

(σ, a) : ∆ → Γ.A

satisfying

pA(σ, a) = σ

qA[σ, a] = a.



2. Natural Models: Context Extension

∆

σ

##

(σ,a)
!!

a

��
Γ.A

pA
��

qA
// Tm

p

��
Γ

A
// Ty

By the uniqueness of (σ, a), we also have

(σ, a) ◦ τ = (σ ◦ τ, a[τ ]) for any τ : ∆′ → ∆

and
(pA, qA) = 1.

These are precisely the laws of a CwF, under the equivalence

Set(
∫
C Ty)op ≃ SetC

op
/Ty



2. Natural Models and Clans
Let p : U̇ → U be a natural model.

The fibration Fp → C of all pullbacks of p

A∗p : Γ.A → Γ for all A : Γ → U

form a display map category (=: pre-clan).

Conversely, given any pre-clan (C,F), there is a natural model
pF : U̇F → UF over C,

pF =
∐
f ∈F

yf :
∐
f ∈F

ydom(f ) →
∐
f ∈F

ycod(f ) .

There is an adjunction p ⊣ F

PreClan

p

44NatMod .

F
ss



2. Natural Models and Initiality

• The notion of a natural model is essentially algebraic
(generalized algebraic, dependently typed algebraic, clan
algebraic, finite limit theory, ...).

• The algebraic homomorphisms correspond exactly to
syntactic translations.

• There are initial algebras, as well as free algebras over basic
types and terms.

• The rules of type theory can be seen as a procedure for
generating the free algebras.



3. Modeling the Type Formers

A natural model p : U̇ → U determines a polynomial endofunctor

P : SetC
op → SetC

op
,

defined for every X : Cop → Set by

P(X ) =
∑
A : U

X [A] ,

where [A] = p−1(A) is the fiber of p : U̇ → U at A : U.



3. Modeling the Type Formers: Polynomials

The construction of P(X ) can be described as follows.

SetC
op

U̇∗
��

P // SetC
op

SetC
op
/U̇

Πp

// SetC
op
/U

ΣU

OO

X X × U̇oo

��

P(X )

��
U̇ p

// U



3. Modeling the Type Formers

Lemma (UMP of polynomials)

Maps Γ → P(X ) correspond naturally to pairs (A,B) where:

X Γ.A
Boo

��

// U̇

p

��
Γ

A
// U



3. Modeling the Type Formers

Applying P to U itself therefore gives an object

P(U) =
∑
A:U

U[A]

such that maps Γ → P(U) correspond naturally to types in an
extended context Γ.A ⊢ B

U Γ.A
Boo

��

// U̇

p

��
Γ

A
// U



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

P(U̇)

P(p)

��

λ // U̇

p

��
P(U)

Π
// U



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

p

��∑
A:U

U[A] P(U)
Π

// U



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

p

��∑
A:U

U[A] P(U)
Π

// U

A ⊢ B ΠAB



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

Proof:
A ⊢ b : B λAb

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

p

��∑
A:U

U[A] P(U)
Π

// U

A ⊢ B ΠAB



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

Proof:
f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

p

��∑
A:U

U[A] P(U)
Π

// U

A ⊢ B ΠAB



3. Modeling the Type Formers: Π

Proposition

A natural model p : U̇ → U models the rules for Π-types just if
there are maps λ,Π making the following a pullback.

Proof:

A ⊢ f (x) : B λAf (x) = f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

p

��∑
A:U

U[A] P(U)
Π

// U

A ⊢ B ΠAB



3. Modeling the Type Formers: Σ

Proposition

A natural model p : U̇ → U models the rules for Σ-types just if
there are maps (pair,Σ) making the following a pullback

Q

q

��

pair // U̇

p

��
P(U)

Σ
// U

where q : Q → P(U) is the polynomial composition Pq = P ◦ P.

Explicitly:

Q =
∑
A:U

∑
B:UA

∑
x :A

B(x)



3. Modeling the Type Formers: Strictification

Theorem
Given any Π-tribe (C,F), for example a Quillen model category
with the Frobenius property, the associated natural model
pF : U̇F → UF under the adjunction

PreClan

p

44NatMod .

F
ss

has Σ and Π types (as well as Id-types).

The natural model pF : U̇F → UF is thus a strictification of the
homotopical model (C,F).



4. A Polynomial Monad

Consider the rules for a terminal type T.

⊢ T ⊢ ∗ : T x : T ⊢ x = ∗ : T

Proposition

A natural model p : U̇ → U models the rules for a terminal type
just if there are maps (∗,T) making the following a pullback.

1
∗ //

��

U̇

p

��
1

T
// U



4. A Polynomial Monad

Consider the pullback squares for T and Σ.

1
∗ //

��

U̇

p

��
1

T
// U

Q

q

��

pair // U̇

p

��
P(U)

Σ
// U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

τ : 1 ⇒ P σ : P ◦ P ⇒ P



4. A Polynomial Monad

Theorem (A-Newstead)

A natural model p : U̇ → U models T and Σ types just if the
associated polynomial endofunctor P has the structure of a
cartesian monad.

τ : 1 ⇒ P σ : P ◦ P ⇒ P



4. A Polynomial Monad

The monad laws correspond to the following type isomorphisms.

σ ◦ Pσ = σ ◦ σP
∑
a:A

∑
b:B(a)

C (a, b) ∼=
∑

(a,b):
∑
a:A

B(a)

C (a, b)

σ ◦ Pτ = 1
∑
a:A

1 ∼= A

σ ◦ τP = 1
∑
x :1

A ∼= A



4. A Polynomial Monad

The pullback square for Π

P(U̇)

P(p)

��

λ // U̇

p

��
P(U)

Π
// U

determines a cartesian natural transformation

π : P2(p) ⇒ p

where P2 : Ĉ2 → Ĉ2 is the lift of P to the arrow category Ĉ2.



4. A Polynomial Monad

So a natural model p : U̇ → U models Π types just if it has an
algebra structure for the lifted endofunctor P2.

π : P2(p) ⇒ p

The algebra laws correspond to the following type isomorphisms.

π ◦ Pπ = π ◦ σ
∏
a:A

∏
b:B(a)

C (a, b) ∼=
∏

(a,b):
∑
a:A

B(a)

C (a, b)

π ◦ τ = 1
∏
x :1

A ∼= A



Summary: Strictification

Theorem
A homotopical model of (homotopy) type theory gives rise to a
natural model p : U̇ → U which

(i) presents a polynomial monad, and an algebra for it, and

(ii) strictly models the Π,Σ and Id type formers.
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