Limits and exponentiable functors in synthetic ∞-categories

César Bardomiano Matínez

University of Ottawa

Interactions of Proof Assitants and Mathematics Regensburg, September 2023

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

∞-categories

- Idea of an ∞-category: It is what follows in 1-category, 2-category, ..., n-category ...
- Roughly (∞, n)-category looks something like

- Problem: Many definitions, and none of them is easy, some of them remain incomparable.
- Possible solution (for ($\infty, 1$)-categories): Synthetic theory using type theory (Riehl-Shulman [RS17]) or set-theoretic (Riehl-Verity [RV22]). And more recently (also type theoretic) Cisinski-Nguyen-Walde.
- Our contribution: Theory of (Co)Limits and exponentiable functors [BM22].

Simplicial HoTT

- We start with HoTT:
* Dependent types; $B: A \rightarrow \mathcal{U}$.
* Dependent sums; \sum.
* Dependent products; Π.
* Univalence axiom.
- Buchholtz-Weinberger in [BW21] observed that sHoTT can be obtained by adding a strict interval to HoTT:
A type 2 with distinct endpoints 0,1 with an order relation making it into a strict interval.
- One feature of sHoTT that simplify it are shapes and subshapes.
- We can build simplicies:

$$
\Delta^{n}:=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right): \mathbb{2}^{n} \mid t_{n} \leq \ldots t_{2} \leq t_{1}\right\}
$$

And also $\partial \Delta^{n}, \Lambda_{k}^{n}$ for $0 \leq k \leq n$.

- Another ingredient is extension types:
ϕ and ψ are shapes with $\phi \subseteq \psi$, a type family $A: \Gamma \times \psi \rightarrow \mathcal{U}$ and $a: \prod_{\Gamma \times \phi} A$ then we form

$$
\left\langle\left.\prod_{\Gamma \times \psi} A\right|_{a} ^{\phi}\right\rangle:=\left\langle\begin{array}{l}
\phi \stackrel{a}{\longrightarrow} A \\
\downarrow \\
\psi
\end{array}\right\rangle
$$

For a type A, we can define:

- Given $x, y: A, \operatorname{hom}_{A}(x, y):=\left\langle\Delta^{1} \rightarrow A \left\lvert\, \begin{array}{l}\partial \Delta^{1} \\ {[x, y]}\end{array}\right.\right\rangle$. If $f: \operatorname{hom}(x, y)$ then $f(0) \equiv x$ and $f(1) \equiv y$.
- For $x: A$, an identity arrow $\mathrm{id}_{x}:=\lambda\left(t: \Delta^{1}\right) \cdot x$.
- If $f: \operatorname{hom}_{A}(x, y), g: \operatorname{hom}_{A}(y, z)$ and $h: \operatorname{hom}_{A}(x, z)$:

Segal types

Segal types are types with "unique composition". By definition, if the type

$$
\sum_{h: \operatorname{hom}_{A}(x, z)} \operatorname{hom}_{A}^{2}\left(x^{f / \ell^{y} \ell^{g}} z\right)
$$

is contractible.

- This is enough to get the categorical structure: we have associative and unital composition.
- Functions $f: A \rightarrow B$ between Segal types are "functors".

Theorem (Riehl-Shulman)
The category sSet ${ }^{\Delta^{o p}}$ supports an interpretation of sHoTT where Segal types correspond to Segal spaces and Rezk types to Rezk spaces.

Rezk types

- An arrow $f: \operatorname{hom}_{A}(x, y)$ is an isomorphism if

$$
\left(\sum_{g: \operatorname{hom}_{A}(y, x)} g \circ f=\mathrm{id}_{x}\right) \times\left(\sum_{h: \operatorname{hom}_{A}(y, x)} f \circ h=\mathrm{id}_{y}\right) .
$$

- The type above is a proposition:

$$
(x \cong y):=\sum_{f: \operatorname{hom}_{A}(x, y)} \operatorname{isiso}(f)
$$

- By path induction

$$
\text { idtoiso : } \prod_{x, y: A}(x=y) \rightarrow(x \cong y)
$$

A Segal type is Rezk if idtoiso is an equivalence.

Adjunctions

A natural transformation is an element $\alpha: \operatorname{hom}_{A \rightarrow B}(f, g)$.

- Component-wise determined

$$
\operatorname{hom}_{A \rightarrow B}(f, g) \simeq \prod_{a: A} \operatorname{hom}_{B}(f(a), g(a))
$$

- The type theory makes them natural.

A quasi-transposing adjunction between types A, B consist of functors $f: A \rightarrow B$ and $u: B \rightarrow A$ and a family of equivalences

$$
\phi: \prod_{a: A, b: B}\left(\operatorname{hom}_{B}(f a, b) \simeq \operatorname{hom}_{A}(a, u b)\right) .
$$

Covariant families

A family $C: A \rightarrow \mathcal{U}$ is covariant if for each $x, y: A$, $f: \operatorname{hom}_{A}(x, y)$ and $u: C(x)$ the type

$$
\sum_{v: C(y)} \operatorname{hom}_{C(f)}(u, v)
$$

is contractible.

Theorem (Riehl-Shulman)
If $B: A \rightarrow \mathcal{U}$ is a covariant family type over a Segal type A then $\sum_{a: A} B(a)$ is a Segal type.

Theorem
If A is a Rezk type and $C: A \rightarrow \mathcal{U}$ is a covariant family over A then $\sum_{x: A} C(x)$ is also a Rezk type.

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

(Co)Limits

An element $b: B$ is initial if for all $x: B, \operatorname{hom}_{B}(b, x)$ is contractible.
Also, an element $b: B$ is terminal if for all $x: B, \operatorname{hom}_{B}(x, b)$ is contractible.
Define the type of (co)cones of $f: A \rightarrow B$
cocone $(f):=\sum_{b: B} \operatorname{hom}_{B^{A}}(f, \triangle b)$ and cone $(f):=\sum_{b: B} \operatorname{hom}_{B^{A}}(\triangle b, f)$.

Definition

A colimit for $f: A \rightarrow B$ is an initial element of the type:

$$
\operatorname{cocone}(f):=\sum_{x: B} \operatorname{hom}_{B^{A}}(f, \triangle x)
$$

A limit for $f: A \rightarrow B$ is an terminal element of the type:

$$
\operatorname{cone}(f):=\sum_{x: B} \operatorname{hom}_{B^{A}}(\triangle x, f)
$$

Classical results (sHoTT version)

Theorem

1. (Co)Limits are unique up to isomorphism if they exist.
2. There exist a colimit (a, α) for f if and only if

$$
\prod_{x: B}\left(\operatorname{hom}_{B}(a, x) \simeq \operatorname{hom}_{B^{A}}(f, \triangle x)\right) .
$$

In the presence of an adjunction, then we also have the usual preservation of limits and colimits.

Theorem
Let A, B be Segal types and functions $g: J \rightarrow B, f: A \rightarrow B$, $u: B \rightarrow A$, such that g has a limit (b, β) and u is right quasi-transposing adjunction of f then $(u(b), u \beta)$ is a limit for $u g: J \rightarrow A$.

Special case: Rezk types

Let B is a Segal type a $f: A \rightarrow B$ a function, we define the type:

$$
\begin{aligned}
\operatorname{colimit}(f) & :=\sum_{w: \operatorname{conunder}(f)} \text { isinitial }(w), \\
\operatorname{limit}(f) & :=\sum_{w: \operatorname{cone}(f)} \text { isterminal }(w)
\end{aligned}
$$

Proposition

Over Rezk types, the types colimit (f) and $\operatorname{limit}(f)$ are propositions. Therefore, (co)limits are unique.

Outline

sHoTT

Limit of Spaces

Exponentiable functors

Limit of spaces

Let $\left\{G_{i}\right\}_{i \in I}$ be a family of ∞-groupoids indexed by a set I. Denote by G to the obvious diagram $I \rightarrow \infty$-Gpd then we would expect a formula

$$
\lim _{l} G_{i}=\prod_{i \in I} G_{i}
$$

to be true.
Problem:There is not something like an ∞-category of ∞-groupoids in sHoTT.
Solution: univalent covariant families due to [RCS, Cavallo-Riehl-Sattler].

Covariant univalent families

Fix a covariant family $E: B \rightarrow \mathcal{U}$ over a Segal type B and $a, b: B$ we obtain a function

$$
\text { arrtofun : } \operatorname{hom}_{B}(a, b) \rightarrow(E(a) \rightarrow E(b)) .
$$

E is covariant univalent if for all $a, b: B$ the map arrtofun is an equivalence.
For a type A define

$$
\operatorname{issmall}_{B}(A):=\sum_{b: B}(E(b) \simeq A)
$$

The type A is B-small if issmall $B_{B}(A)$.
The type B is regarded as an " ∞-category" of " ∞-groupoids", it is definable in sHoTT and consistent [RCS, Cavallo-Riehl-Sattler].

Limit as dependant product

Let B a Rezk type, a function $f: D \rightarrow B$ and assume that $E: B \rightarrow \mathcal{U}$ is a covariant univalent family.

Proposition
If $\left(b_{0}, \sigma_{0}\right)$ is the center of contraction of issmall ${ }_{B}\left(\prod_{d: D} E(f(d))\right)$ then b_{0} is the limit for f.

Proposition
If $f: D \rightarrow B$ has limit $\left(b_{0}, \alpha\right)$ and there is $b_{1}: B$ and $u: E\left(b_{1}\right)$.
Then $\prod_{d: D} E(f(d))$ is B-small.

Outline

sHoTT
\section*{Limits}
\section*{Limit of Spaces}

Exponentiable functors

Segal type completion

Let A be a type. We say that a Segal type S and a map $\iota: A \rightarrow S$ is a Segal type completion for A if for any Segal type X, the map

$$
\circ \iota:(S \rightarrow X) \rightarrow(A \rightarrow X)
$$

is an equivalence. The picture we need is

Furhermore, we need a relative to some fixed Segal type:

Conduché's Theorem in sHoTT

Theorem
Let $f: E \rightarrow B$ a map between Segal types, the following are equivalent:

1. For any Segal type X and $g: X \rightarrow B$, the type

$$
\sum_{b: B}\left(E_{b} \rightarrow X_{b}\right)
$$

is Segal.
2. If $\alpha: \Delta^{2} \rightarrow B$ and $i: \Lambda_{1}^{2} \rightarrow B$, we get the pullbacks

Then F_{1} is the Segal type completion of F_{2}.

Given $f: \mathcal{E} \rightarrow \mathcal{B}$ a functor and $a, b \in \mathcal{B}$. We can define a profunctor (bifibration) hom $: \mathcal{E}_{a}^{o p} \times \mathcal{E}_{b} \rightarrow$ Set.

Theorem (Conduché)

For a functor $f: \mathcal{E} \rightarrow \mathcal{B}$, the following conditions are equivalent:

1. The functor $f: \mathcal{E} \rightarrow \mathcal{B}$ is exponentiable.
2. For all
$a, b, c \in \mathcal{B}, u \in \operatorname{hom}_{\mathcal{B}}(a, b), v \in \operatorname{hom}_{\mathcal{B}}(b, c), x \in \mathcal{E}_{a}, z \in \mathcal{E}_{c}$, the induced map

$$
\left(\int^{y \in \mathcal{E}_{b}} \operatorname{hom}_{\mathcal{E}}^{u}(x, y) \times \operatorname{hom}_{\mathcal{E}}^{v}(y, z)\right) \rightarrow \operatorname{hom}_{\mathcal{E}}^{v \circ u}(x, z)
$$

is an isomorphism.

For any $a, b, c: B, u: \operatorname{hom}_{B}(a, b), v: \operatorname{hom}_{B}(b, c)$ and $x: E_{a}, z: E_{c}$ the map induced by the composition

$$
\left(\sum_{y: E_{b}} \operatorname{hom}_{E}^{u}(x, y) \times \operatorname{hom}_{E}^{v}(y, z)\right) \rightarrow \operatorname{hom}_{E}^{v \circ u}(x, z)
$$

shows hom ${ }_{E}^{\text {vou }}(x, z)$ as the discrete type completion of

$$
\sum_{y: E_{b}} \operatorname{hom}_{E}^{u}(x, y) \times \operatorname{hom}_{E}^{v}(y, z) .
$$

One obstruction is that we do not know how (or if it is possible) to prove in sHoTT that correspondences \simeq bifibrations.

Thank you!

César Bardomiano-Martínez.
Limits and colimits of synthetic ($\infty, 1$)-categories.
arXiv:2202.12386, 2022.
囯 Ulrik Buchholtz and Jonathan Weinberger.
Synthetic fibered ($\infty, 1$)-category theory.
arXiv:2105.01724v3, 2021.
Emily Riehl, Evan Cavallo, and Christian Sattler.
On the directed univalence axiom.
AMS special session on Homotopy type theory, Joint
Mathematics Meetings.
Emily Riehl and Michael Shulman.
A type theory for synthetic ∞-categories.
Higher Structures, 1(1):116-193, 2017.
圊 Emily Riehl and Dominic Verity.
Elements of ∞-Category Theory.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022.

