Limits and exponentiable functors in synthetic ∞ -categories

César Bardomiano Matínez

University of Ottawa

Interactions of Proof Assitants and Mathematics Regensburg, September 2023

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

∞ -categories

- Idea of an ∞-category: It is what follows in 1-category, 2-category, ..., n-category ...
- Roughly (∞, n) -category looks something like

- Problem: Many definitions, and none of them is easy, some of them remain incomparable.
- Possible solution (for (∞, 1)-categories): Synthetic theory using type theory (Riehl-Shulman [RS17]) or set-theoretic (Riehl-Verity [RV22]). And more recently (also type theoretic) Cisinski-Nguyen-Walde.
- Our contribution: Theory of (Co)Limits and exponentiable functors [BM22].

Simplicial HoTT

We start with HoTT:

- * Dependent types; $B : A \rightarrow \mathcal{U}$.
- * Dependent sums; \sum .
- * Dependent products; \prod .
- Univalence axiom.
- Buchholtz-Weinberger in [BW21] observed that sHoTT can be obtained by adding a strict interval to HoTT: A type 2 with distinct endpoints 0, 1 with an order relation making it into a strict interval.

- One feature of sHoTT that simplify it are shapes and subshapes.
- We can build simplicies:

$$\Delta^n := \{(t_1, t_2, \ldots, t_n) : 2^n \mid t_n \leq \ldots t_2 \leq t_1\}$$

And also $\partial \Delta^n$, Λ^n_k for $0 \le k \le n$.

Another ingredient is **extension types**: ϕ and ψ are shapes with $\phi \subseteq \psi$, a type family $A : \Gamma \times \psi \rightarrow \mathcal{U}$ and $a : \prod_{\Gamma \times \phi} A$ then we form

$$\left\langle \prod_{\Gamma \times \psi} A \mid_{a}^{\phi} \right\rangle := \left\langle \begin{array}{c} \phi \xrightarrow{a} A \\ \downarrow \swarrow \end{array} \right\rangle$$

For a type A, we can define:

- Given x, y : A, $\hom_A(x, y) := \left\langle \Delta^1 \to A \middle| \begin{smallmatrix} \partial \Delta^1 \\ [x,y] \end{smallmatrix} \right\rangle$. If $f : \hom(x, y)$ then $f(0) \equiv x$ and $f(1) \equiv y$.
- For x : A, an identity arrow $id_x := \lambda(t : \Delta^1).x$.
- If $f : \hom_A(x, y), g : \hom_A(y, z) \text{ and } h : \hom_A(x, z)$:

$$\hom^2_A \left(\begin{array}{c} f & y \\ f & g \\ x & \underline{f} \\ h & z \end{array} \right) := \left\langle \Delta^2 \to A \Big|_{[x,y,z,f,g,h]}^{\partial \Delta^2} \right\rangle.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Segal types

Segal types are types with "unique composition". By definition, if the type

$$\sum_{h:\hom_A(x,z)} \hom_A^2 \left(\begin{array}{c} f & y \\ x & & \\ &$$

- is contractible.
 - This is enough to get the categorical structure: we have associative and unital composition.
 - Functions $f : A \rightarrow B$ between Segal types are "functors".

Theorem (Riehl-Shulman)

The category $\mathbf{sSet}^{\Delta^{op}}$ supports an interpretation of sHoTT where Segal types correspond to Segal spaces and Rezk types to Rezk spaces.

Rezk types

• An arrow f : hom_A(x, y) is an **isomorphism** if

$$\left(\sum_{g:\hom_A(y,x)}g\circ f=\mathsf{id}_x\right)\times\left(\sum_{h:\hom_A(y,x)}f\circ h=\mathsf{id}_y\right).$$

The type above is a proposition:

$$(x \cong y) := \sum_{f: \mathsf{hom}_A(x,y)} \mathsf{isiso}(f).$$

By path induction

$$\mathsf{idtoiso}: \prod_{x,y:A} (x = y) \to (x \cong y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Segal type is **Rezk** if idtoiso is an equivalence.

Adjunctions

A natural transformation is an element α : hom_{A \to B}(f, g).

Component-wise determined

$$\hom_{A \to B}(f,g) \simeq \prod_{a:A} \hom_B(f(a),g(a)).$$

The type theory makes them natural.

A quasi-transposing adjunction between types A, B consist of functors $f : A \rightarrow B$ and $u : B \rightarrow A$ and a family of equivalences

$$\phi: \prod_{a:A,b:B} (\hom_B(fa, b) \simeq \hom_A(a, ub)).$$

Covariant families

A family $C : A \rightarrow U$ is **covariant** if for each x, y : A, $f : hom_A(x, y)$ and u : C(x) the type

 $\sum_{v:C(y)} \hom_{C(f)}(u,v)$

is contractible.

Theorem (Riehl-Shulman)

If $B : A \to U$ is a covariant family type over a Segal type A then $\sum_{a:A} B(a)$ is a Segal type.

Theorem

If A is a Rezk type and $C : A \rightarrow U$ is a covariant family over A then $\sum_{x:A} C(x)$ is also a Rezk type.

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

(Co)Limits

An element b : B is **initial** if for all x : B, $hom_B(b, x)$ is contractible.

Also, an element b : B is **terminal** if for all x : B, $hom_B(x, b)$ is contractible.

Define the type of (co)cones of $f : A \rightarrow B$

$$\mathsf{cocone}(f) := \sum_{b:B} \mathsf{hom}_{B^A}(f, \triangle b) \text{ and } \mathsf{cone}(f) := \sum_{b:B} \mathsf{hom}_{B^A}(\triangle b, f).$$

Definition

A **colimit** for $f : A \rightarrow B$ is an initial element of the type:

$$\operatorname{cocone}(f) := \sum_{x:B} \hom_{B^A}(f, \triangle x).$$

A **limit** for $f : A \rightarrow B$ is an terminal element of the type:

$$\operatorname{cone}(f) := \sum_{x:B} \hom_{B^A}(\triangle x, f).$$

Classical results (sHoTT version)

Theorem

- 1. (Co)Limits are unique up to isomorphism if they exist.
- 2. There exist a colimit (a, α) for f if and only if

$$\prod_{x:B} (\hom_B(a,x) \simeq \hom_{B^A}(f, \triangle x)).$$

In the presence of an adjunction, then we also have the usual preservation of limits and colimits.

Theorem

Let A, B be Segal types and functions $g : J \to B$, $f : A \to B$, $u : B \to A$, such that g has a limit (b, β) and u is right quasi-transposing adjunction of f then $(u(b), u\beta)$ is a limit for $ug : J \to A$.

・ロト・日本・日本・日本・日本

Special case: Rezk types

Let B is a Segal type a $f : A \rightarrow B$ a function, we define the type:

$$\operatorname{colimit}(f) := \sum_{w:\operatorname{conunder}(f)} \operatorname{isinitial}(w),$$

 $\operatorname{limit}(f) := \sum_{w:\operatorname{cone}(f)} \operatorname{isterminal}(w).$

Proposition

Over Rezk types, the types colimit(f) and limit(f) are propositions. Therefore, (co) limits are unique.

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Limit of spaces

Let $\{G_i\}_{i \in I}$ be a family of ∞ -groupoids indexed by a set I. Denote by G to the obvious diagram $I \to \infty$ -**Gpd** then we would expect a formula

$$\lim_{I} G_{I} = \prod_{i \in I} G_{I}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

to be true.

Problem:There is not something like an ∞ -category of ∞ -groupoids in sHoTT. Solution: *univalent covariant families* due to [RCS, Cavallo-Riehl-Sattler].

Covariant univalent families

Fix a covariant family $E: B \to U$ over a Segal type B and a, b: B we obtain a function

arrtofun :
$$\hom_B(a, b) \rightarrow (E(a) \rightarrow E(b))$$
.

E is **covariant univalent** if for all a, b : B the map arrtofun is an equivalence.

For a type A define

$$\mathsf{issmall}_B(A) := \sum_{b:B} (E(b) \simeq A)$$

The type A is B-small if issmall_B(A).

The type *B* is regarded as an " ∞ -category" of " ∞ -groupoids", it is definable in sHoTT and consistent [RCS, Cavallo-Riehl-Sattler].

Limit as dependant product

Let B a Rezk type, a function $f: D \to B$ and assume that $E: B \to U$ is a covariant univalent family.

Proposition

If (b_0, σ_0) is the center of contraction of issmall_B $(\prod_{d:D} E(f(d)))$ then b_0 is the limit for f.

Proposition

If $f : D \to B$ has limit (b_0, α) and there is $b_1 : B$ and $u : E(b_1)$. Then $\prod_{d:D} E(f(d))$ is *B*-small.

Outline

sHoTT

Limits

Limit of Spaces

Exponentiable functors

Segal type completion

Let A be a type. We say that a Segal type S and a map $\iota : A \to S$ is a **Segal type completion** for A if for any Segal type X, the map

$$\circ\iota:(S o X) o (A o X)$$

is an equivalence. The picture we need is

Furhermore, we need a relative to some fixed Segal type:

(日) (四) (日) (日) (日)

Conduché's Theorem in sHoTT

Theorem

Let $f : E \to B$ a map between Segal types, the following are equivalent:

1. For any Segal type X and $g: X \to B$, the type

$$\sum_{b:B} \left(E_b \to X_b \right)$$

is Segal.

2. If $\alpha : \Delta^2 \to B$ and $i : \Lambda_1^2 \to B$, we get the pullbacks

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Then F_1 is the Segal type completion of F_2 .

Given $f : \mathcal{E} \to \mathcal{B}$ a functor and $a, b \in \mathcal{B}$. We can define a profunctor (bifibration) $hom_{\mathcal{E}} : \mathcal{E}_a^{op} \times \mathcal{E}_b \to \mathbf{Set}$.

Theorem (Conduché)

For a functor $f : \mathcal{E} \to \mathcal{B}$, the following conditions are equivalent:

- 1. The functor $f : \mathcal{E} \to \mathcal{B}$ is exponentiable.
- 2. For all

a, b, $c \in \mathcal{B}$, $u \in hom_{\mathcal{B}}(a, b)$, $v \in hom_{\mathcal{B}}(b, c)$, $x \in \mathcal{E}_a$, $z \in \mathcal{E}_c$, the induced map

$$\left(\int^{y\in\mathcal{E}_b} hom^u_{\mathcal{E}}(x,y) imes hom^v_{\mathcal{E}}(y,z)\right) o hom^{v\circ u}_{\mathcal{E}}(x,z)$$

is an isomorphism.

For any $a, b, c : B, u : hom_B(a, b), v : hom_B(b, c)$ and $x : E_a, z : E_c$ the map induced by the composition

$$\left(\sum_{y:E_b} \hom_E^u(x,y) \times \hom_E^v(y,z)\right) \to \hom_E^{v \circ u}(x,z)$$

shows hom $E^{v \circ u}(x, z)$ as the discrete type completion of

$$\sum_{y:E_b} \hom_E^u(x,y) \times \hom_E^v(y,z).$$

One obstruction is that we do not know how (or if it is possible) to prove in sHoTT that correspondences \simeq bifibrations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

César Bardomiano-Martínez. Limits and colimits of synthetic $(\infty, 1)$ -categories. arXiv:2202.12386, 2022.

- Ulrik Buchholtz and Jonathan Weinberger. Synthetic fibered $(\infty, 1)$ -category theory. arXiv:2105.01724v3, 2021.
- Emily Riehl, Evan Cavallo, and Christian Sattler. On the directed univalence axiom. AMS special session on Homotopy type theory, Joint Mathematics Meetings.
- Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. *Higher Structures*, 1(1):116–193, 2017.
- Emily Riehl and Dominic Verity.
 Elements of ∞-Category Theory.
 Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・