Lean 4: an extensible proof assistant and
programming language
Leonardo de Moura

Senior Principal Applied Scientist - AWS
Chief Architect - Lean FRO

EW Proof Assistant & Programming Language

Based on dependent type theory

Goals
Extensibility, Expressivity, Scalability, Efficiency

A platform for

Formalized mathematics

Software development and verification

Developing custom automation and Domain Specific Languages
Small trusted kernel, external type/proof checkers
http://lean-lang.org

http://lean-lang.org

EW is and IDE for automated reasoning

Lean is a development environment for automated reasoning.
Proofs and definitions are machine checkable.
The math community using Lean is growing rapidly. They love the system.

A compiler: high-level language = kernel code

5 theorem euclid exists infinite primes (n : N) : 3 p, n = p A Prime p :=

6 let p := minFac (factorial n + 1)

7 have fl : (factorial n + 1) # 1 :=

8 ne of gt $ succ 1t succ' $ factorial pos _

9 have pp : Prime p :=

10 min fac prime f1

11 have np : n = p := le of not ge fun h => 1
12 have h: : p | factorial n := dvd factorial (min_fac pos) h

13 have h : p | 1 := (Nat.dvd add iff right hi).2 (min_fac dvd)

14 pp.not dvd one h:

15 Exists.intro p |

Lean 4 is an efficient programming language

We want proof automation written by users to be very efficient.

Lean memory manager is now the Bing memory manager (Daan Leijen - RiSE).
"Functional but in Place" (FBIP) distinguished paper award at PLDI'21,

Proofs are used to optimize code too.

It is a fully extensible programming language.

There are many more surprises coming...

Lean is a language for "programming your proofs and proving your programs”

tVN enables decentralized collaboration

Meta-programming Formal Proofs

Users extend Lean using Lean itself. You don't need to trust me to use my
Proof automation. proofs.

Visualization tools. You don't need to trust my proof

Custom notation. u . automation to use it.

Hack without fear.

l mathlib documentation
\

| style guide
documentation style guide
naming conventions

1 Library
} core

» data
| » init
| » system

mathlib

» algebra

v algebraic_geometry
» presheafed_space
EllipticCurve
Scheme
Spec
is_open_comap_C
locally_ringed_space
presheafed_space
prime_spectrum

V/N develops Mathlib

Community

algebraic_geometry.Scheme

| [Google site search |

theorem algebraic_geometry.Scheme.l_obj_op source
(X : algebraic_geometry.Scheme) :
algebraic_geometry.Scheme.l.obj (opposite.op X) =
X.X.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op T)
@[simp] source

theorem algebraic_geometry.Scheme.l_map {X Y :
(f: X —>Y):
algebraic_geometry.Scheme.l.map f =
f.unop.val.c.app (opposite.op T) »
(opposite.unop Y).X.to SheafedSpace.to_PresheafedSpace.presheaf

.map algebraic_geometry.LocallyRingedSpace.to_SheafedSpace

(topological_space.opens.le_map_top f.unop.val.base T).op

algebraic_geometry.Scheme®? }

theorem algebraic_geometry.Scheme.l_map_op
(fF: X —>Y):
algebraic_geometry.Scheme.l.map f.op =
f.val.c.app (opposite.op T) »
X.X.to_SheafedSpace.to_PresheafedSpace.presheaf.map
(topological_space.opens.le_map_top f.val.base T).op

source

algebraic_ geometry.Scheme

source

» Imports
» Imported by

algebraic_geometry.Scheme

algebraic_geometry.Scheme.Spec

algebraic_geometry.Scheme.
Spec_map
algebraic_geometry.Scheme.
Spec_map_2
algebraic_geometry.Scheme.
Spec_map_comp
algebraic_geometry.Scheme.
Spec_map_id
algebraic_geometry.Scheme.
Spec_obj
algebraic_geometry.Scheme.
Spec_obj_2
algebraic_geometry.Scheme.

The Lean Mathematical Library
The mathlib Community*

Abstract

This paper describes mathlib, a community-driven effort
to build a unified library of mathematics formalized in the
Lean proof assistant. Among proof assistant libraries, it is
distinguished by its dependently typed foundations, focus
on classical mathematics, extensive hierarchy of structures,
use of large- and small-scale automation, and distributed or-
ganization. We explain the architecture and design decisions
of the library and the social organization that has led to its
development.

Mathlib statistics

Counts

Contributors

310

Number of lines

Theorems
122987

Definitions
66599

1200000

1000000

800000

600000

400000

200000

The Lean Zulip Channel - https://leanprover.zulipchat.com

Condensed R-modules Oct 07

W Peter Scholze (corco

N~ Mymath understandingis that condensed Ab.{u+1} oughtto befunctorsfrom pProfinite.{u} to Ab.{u+1} ,and
then the index set 3 that appears will be, for a presheaf F', the disjoint union over all isomorphism classes of objects .S Stanislas Polu
of Profinite.{u} ofF(S). Now in ZFC universes, this disjoint union still lies in the u+1 universe.

lean-gptf OpenAl gpt-f key Oct 08

@Ayush Agrawal | let me check ¢

But what you say above indicates that this is also true, as long as the index set of S's is still in universe u . Well, itisn't & 1

quite - it's a bit larger, but still much smaller than u+1 in terms of ZFC universes. .
We had a bit of a backlog

So maybe that it helps to take instead functors from Profinite.{u} to Ab.{u+2} ? Then|'m pretty sure profinite. Good thinkyou reached out. Invites are out

{u} liesin Type.{u+1} ,sothat disjoint union ofF(S)'s above should liein Type.{u+2} , and this should be good
enough. But! Note that the model is quite stale. We're working on updating it, but don't be surprised if it's not super useful as it
was trained on a rather old snaphost of mathlib

& 1

Cyclotomic field defn Oct 25

@ Eric Rodriguez 10:09
I noticed this project so far is working with adjoin_root cyclotomic .lwonder if instead, xAn-1.splitting_field isa
better option. | think the second option is better suited to Galois theory (as then the .gal has good defeq) and also
easier to generalise to other fields. (it works for all fields with n # 0, whilst | think this one may not)

general Bachelor thesis accomplished €/ Today

new members vVYXxyz:Axzy->(xzzVy#z):= &) Giacomo Maletto

QK& Hello, I'm a math student at University of Turin and I've been using proof assistants for about a year, with the objective of

Jia Xuan Ng (om0 formalizing a computer science paper written by my advisor (about a class of functions similar in spirit to primitive

Hieveryone, I'm trying to prove Vxy z: A, x #y > (x #Z V y #) :=, which | believe to be provable. recursive functions, but which are all invertible).

Reason why this is is because | use implication logical equivalences e.g. P > Q === PV Q such that | derived: After a lot of work here's my thesis! https://github.com/GiacomoMaletto/RPP/blob/main/Tesi/main.pdf (Lean code in the
X#ZYy>-(x#z)>y#z==>x#Yy->x=z-Yy#zwhichis essentially stating: same repo).

"If xisn't equivalent toy, if x is equivalent to z, then y isn't equivalent to z", which is a tautology. It's written in an informal, colloquial manner and | tried to turn it into an introduction/invitation to Lean.

However, | just can't seem to do anything... thank you very much Actually I've used Coq for 90% of the duration of the project, completed it, and then switched to Lean - doing basically the

same thing in about 750 LOC instead of >3000. I'm not turning back.

Looking forward to start using Lean for something more involved!

Z | @1

https://leanprover.zulipchat.com

Focused Research Organization (FRO)

A new type of nonprofit startup for science developed by Convergent Research.

convergentresearch.org

Large-Scale Effort

Corporation

Industrial
R&D Lab

Mid-Stage
Startup

Open-Source
Software

Academic
Consortia

Tightly
Coordinated,
Focused Team

Produces
Public Goods,
Not Private Returns

Academic
Co-Authors

Individual
Academic
Researcher(s)

Early Startup

https://www.convergentresearch.org/

The Lean FRO

Mission: address scalability, usability, and proof automation in Lean
We want to popularize formal mathematics and verification.

7 FTEs by end of year

Supported by Simons Foundation International, Alfred P. Sloan Foundation, and
Richard Merkin

lean-fro.org

https://lean-fro.org

Questions of Scale

“Can mathlib scale to 100 times its present size, with a community 100 times its
present size and commits going in at 100 times the present rate? [...] Will the

proofs be maintained afterwards [...]?”

— Joseph Myers on Lean Zulip

https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/lots.20of.20theorems/near/378297465

Reservoir

So many new features in the “oven”

& - C @ reservoir.lean-lang.org

% »O0@ :

Latest Lean Toolchain:
leanprover/lean4:v4.1.0-rc1

Reservoir indexes, builds, and tests packages within the Lean and Lake ecosystem.

Most Popular

© mathliba

© sciLean

© leand-metaprogramming-book

@ std4

© lean4-raytracer

@ aesop

© vatima

@ iris-lean

@ ProofWidgets4

@ aquotes

Just Added

@ mathlib4_with_Leaninfer

@ Leaninfer

@ ControlFlow

@ mathlib4-all-tactics

© Iftcm2023

© formalization-of-mathematics

© nest-slimcheck

@ &G

@ leand-leetcode

@ nest-core

BB Get Started with Lean

Recently Updated

© rinha

@ violet

@ soda

© ash

© melp

© LeanMysQL
@ sround_zero
© mathliba

© GlimpseOfLean

@© mathematics_in_lean_source

So many new features in the “oven”

»J Welcome

Welcome

Lean 4 Setup

setting started with Lean 4
Re-Open Setup Guide
Books and Documentation

Install Required Dependencies

Install Git and curl using your package manager

Install Lean Version Manager
Set Up Lean 4 Project

Questions and Troubleshooting

Mark Done

&

£ [Extension Development Host] Lean4Test2

Installing Required Dependencies

1. Open a new terminal.

2. Depending on your Linux distribution, do one of the following to install Git and curl using your package manager:
© On Ubuntu and Debian, type in sudo apt install git curland press Enter.
© On Fedora, type in sudo dnf install git curland press Enter.
o If you are not sure which Linux distribution you are using, you can try both.

3. When prompted, type in your login credentials.

4. Wait until the installation has completed.

Dependencies Needed by Lean 4

Git is a commonly used Version Control System that is used by Lean to help manage different versions of Lean formalization packages
and software packages.

curl is a small tool to transfer data that is used by Lean to download files when managing Lean formalization packages and software

packages.

Restricted Environments

If you are in an environment where you cannot install Git or curl, for example a restricted university computer, you can check if you
already have them installed by opening a new terminal, typing inwhich git curland pressing Enter. If the terminal output displays

two file paths and no error, you already have them installed.

1f your machine does not already have Git and curl installed and you cannot install them, there is currently no option to try Lean 4 with
a local installation. If you want to try out Lean 4 regardless, you can read Mathematics in Lean and do the exercises with an online
instance of Lean 4 hosted using Gitpod. Doing so requires creating a GitHub account.

D8 [m os

VvV M x

Loogle

CEONC @& loogle.lean-fro.org/?q=Real.sin%2C+Real.cos%2C+%28_+%5E+2%29+%2B+%28_+%5E+2%29

Loogle!
Real.sin, Real.cos, (_"2)+ (_"2)

Result

Found 13 definitions mentioning Real.cos, HPow.hPow, HAdd.hAdd, OfNat.ofNat and Real.sin. Of these, 2 match your patterns.

* Real.cos_sqg_add_sin_sq Mathlib.Data.Complex.Exponential
e Real.sin_sq_add_cos_sq Mathlib.Data.Complex.Exponential

@[simp]
theorem Real.sin_sq_add_cos_sq
(x : R) :
Real.sin x » 2 + Real.cos x A 2 =1

h % 00

source

Loogle

mathlib4 > toFinsetFactors SEP 14
@ Arend Mellendijk 12:20 PM
@loogle Nat.factors, List.toFinset

% loogle i 12:20 PM

C)\ Nat.prime_divisors_eq_to_filter_divisors_prime, Nat.factors_mul_toFinset, and 13 more

y%l¢ Antoine Chambert-Loir 12:32 PM

"20« FactorsFinset

& Eric Wieser coiten 12:39 PM
I'd be tempted to make this an abbrev so thatit doesn't cost anything

The Lean Mathematical Library goes viral - 2020

2020's gest Breakthroughs in Math and Computer Science

“You can do 14 hours a day in it and not get tired and feel kind of high the
whole day,” Livingston said. “You're constantly getting positive reinforcement.”

“It will be so cool that it's worth a big-time investment now,” Macbeth said.
| “I'm investing time now so that somebody in the future can have that amazing
; experience.”

The Liquid Tensor Experiment (LTE) - 2021

Peter Scholze (Fields Medal 2018) was unsure about one of his latest results in Analytic Geometry.
The Lean community and Scholze formalized the result he was unsure about.

We thought it would take years (Scholze included).

Trust agnostic collaboration allowed us to achieve it in months. (Math Hive in action).

"The Lean Proof Assistant was really that: an assistant nature
in navigating through the thick jungle that this proof is. BRI Joi

al information v Publish with us v Subscribe

Really, one key problem | had when | was trying to find T i R
this proof was that | was essentially unable to keep all the wews e 20

objects in my RAM, and | think the same problem occurs Mathematicia.ns welcomei
when trying to read the proof. " Peter Scholze computer-assisted proofin ‘grand
r unification’ theory

> &Y
|

2023 has been a great year for

Q

A.l. and Chatbots >

€he New Work Eimes

CanA.| Be Fooled? Testing aTutorbot ~ Chatbot PromptstoTry A.l's Literary Skills ~ What Are the Dangers of A.l.?
Terence Tao

h @tao@mathstodon.xyz

A 1 Is COIT!i for Mathematics T(')O Leo dg Mc?ura 'surveyed the features ar!d use cases for Lean 4. |

sds ng ” knew it primarily as a formal proof assistant, but it also allows for

For thousands of years, mathematicians have adapted to the less intuitive applications, such as truly massive mathematical

latest advances in logic and reasoning. Are they ready for artificial collaborations on which individual contributions do not need to be

intelligence? reviewed or trusted because they are all verified by Lean. Or to give
a precise definition of an extremely complex mathematical object,

S ownene 2 0] such as a perfectoid space.
ive this article

When Computers Write Proofs, What's the Point of Mathematicians?

youtube.com

2023 has been a great year for

@ Leonardo de Moura (He/Him) - You see
Senior Principal Applied Scientist at AWS, and Chief Architect ...
7 1mo - ®
I am thrilled to announce that the Mathlib (https://Inkd.in/gx6eh4aG)
port to Lean 4 has been successfully completed this weekend. It is truly
remarkable that over 1 million lines of formal mathematics have been
successfully migrated. Once again, the community has amazed me and
surpassed all my expectations. This achievement also aligns with the
10th anniversary of my initial commit to Lean on July 15, 2013. Patrick
Massot has graciously shared a delightful video commemorating this
significant milestone, which can be viewed here:
https://Inkd.in/gjVr72t8.
8 4o e W [N i]]Ren09« s

Lean 4 overview for Mathlib users - Patrick Massot

youtube.com

Leonardo de Moura (He/Him) + You ey

p 7 Senior Principal Applied Scientist at AWS, and Chief Architect ...
= 1mo-®

Ecstatic to come across the following post today! & Here is the link to

the original: https://Inkd.in/dSDFSVhS, and website:
https://Inkd.in/dB9427pU

Daniel J. Bernstein
@djb@cr.yp.to

Formally verified theorems about decoding Goppa codes:
cr.yp.to/2023/leangoppa-202307... This is using the Lean
theorem prover; I'll try formalizing the same theorems in HOL
Light for comparison. This is a step towards full verification of
fast software for the McEliece cryptosystem.

Graydon Hoare
@graydon@types.pl

| fairly often find myself in conversations with people who wish
Rust had more advanced types. And | always say it's pretty much
at its cognitive-load and compatibility induced design limit, and if
you want to go further you should try building a newer language.

And many people find this answer disappointing because starting
a language is a long hard task especially if it's to be a
sophisticated one. And so people ask for a candidate project
they might join and help instead./And my best suggestion for a
while now has been Lean 4. | think it's really about the best thing
going in terms of powerful research languages. Just a
remarkable achievement on many many axes.

Extensibility

We build with (not for) the community

Mathlib is not just math, but many Lean extensions too.

The community extends Lean using Lean itself.

We wrote Lean 4 in Lean to make sure every single part of the system is extensible.

elab "ring" : tactic => do
let g ~ getMainTarget
match g.getAppFnArgs with
| ("Eq, #[ty, ei, ez2]) =>
let ((ex', p1), (e2', pz2)) « RingM.run ty $ do (- eval ei1, « eval e:z)
if < isDefEq e1' ez2' then
let p « mkEqTrans p:1 (< mkEqSymm p:2)
ensureHasNoMvVars p
assignExprMvVar (< getMainGoal) p
replaceMainGoal []
else
throwError "failed \n{< ei'.pp}\n{- ez2'.pp}"
| => throwError "failed: not an equality"

Lean 4 is implemented in Lean

inductive Expr where
| bvar (deBruijnIndex : Nat)
| fvar (fvarId : FVarId)
| mvar (mvarId : MVarId)
| sort (u : Level)
| const (declName : Name) (us : List Level)
| app (fn : Expr) (arg : Expr)
| lam (binderName : Name) (binderType : Expr) (body : Expr) (binderInfo : BinderInfo)
| forallE (binderName : Name) (binderType : Expr) (body : Expr) (binderInfo : BinderInfo)
| letE (declName : Name) (type : Expr) (value : Expr) (body : Expr) (nonDep : Bool)
| Uit : Literal - Expr
| mdata (data : MData) (expr : Expr)
| proj (typeName : Name) (idx : Nat) (struct : Expr)

The Lean 4 Frontend Pipeline
®m parser: = String - Syntax

® macro expansion: Syntax - MacroM Syntax
m actually interleaved with elaboration
m elaboration
m terms: Syntax - TermElabM Expr
m commands: Syntax - CommandElabM Unit
® universes: Syntax - TermElabM Level

m tactics: Syntax - TacticM Unit

The Lean 4 Frontend Pipeline

®m parser: = String - Syntax
® macro expansion: Syntax - MacroM Syntax

m actually interleaved with elaboration
m elaboration
m terms: Syntax - TermElabM Expr
m commands: Syntax - CommandElabM Unit
® universes: Syntax - TermElabM Level
m tactics: Syntax - TacticM Unit
m pretty printer
m delaborator: Expr - DelaboratorM Syntax
m parenthesizer: Syntax - ParenthesizerM Syntax

m formatter: Syntax - FormatterM Format

Macro: simple extensions must be simple!

infixl:65 "+ " => Add.add -- left associative
infix:65 " - " => Sub.sub -- ditto

infixr:80 " ~ " => Pow.pow -—- right associative
prefix:100 "-" => Neg.neg

postfix:arg "-1" => Inv.inv

Macro: simple extensions must be simple!

infix1l:65 " + " => Add
infix:65 " - " => Sub
infixr:80 " ~ " => Pow.
prefix:100 "-" => Neg
postfix:arg "-1" => InVv.

These are just macros!

notation:65 lhs " + " rhs:
notation:65 lhs " - " rhs:

notation:80 lhs " ~ " rhs
notation:100 "-" arg:100
notation:arg arg "-1"

.add
.sub
pow
. heg
inv

66
66

: 80

—— left associative
—— ditto
—— right associative

=> Add.
Sub.
Pow.
Neg.
Inv.

add lhs
sub 1lhs
pow lhs
neg arg
inv arg

rhs
rhs
rhs

Mixfix Notation

notation:arg "(" e ")" => e
notation:10 ' " - " e " : " t => Typing ' e t

Mixfix Notation

notation:arg "(" e ")" => e
notation:10 ' " - " e " : " t => Typing ' e t

Overlapping notations are parsed with a (long) “longest parse” rule

notation:65 a " + " b:66 " + " c:66 => a + b - c
#teval 1 + 2 + 3 — 0

theorem bad : 1 + 2 + 3 =0 := by
rfl

Mixfix Notation

notation:arg "(" e ")" => e
notation:10 ' " - " e " : " t => Typing ' e t

Overlapping notations are parsed with a (long) “longest parse” rule

notation:65 a " + " b:66 " + " c:66 => a + b - c
#eval 1 + 2 + 3 — 0

theorem bad : 1 + 2 + 3 =0 := by
rfl ¥ Tactic state

1 goal
F1+2-3=20

Mixfix Notation

Overlapping notations are parsed with a (long) “longest parse” rule

notation:65 a " + " b:66 " + " c:66 = a + b - C
#eval 1 + 2 + 3 — 0

MAANANAANAANAN

theorem bad : 1 + 2 + 3 =0 := by
rfl ¥ Tactic state

v example.lean:4

Syntax

notation:arg "(" e ")" => e

This is just a macro!

syntax:arg "(" term ")" :

macro_rules

| " (($e)) => "($e)

term iS a syntax category.

term

Syntax

notation:arg "(" e ")" => e

This is just a macro!

syntax:arg " (" term ")" : term
macro_rules

| " (($e)) => "($e)

term iS a syntax category.

declare_syntax_cat index

syntax term : index

syntax term " = " ident " < " term : index
syntax term " : " term : index

syntax "{" index " | " term "}" : term

More Syntax

syntax binderId := ident <|> "_"
syntax unbracketedExplicitBinders := binderId+ (" : " term)?

syntax "begin " tactic,*,? "end" : tactic

Summary: Parsing

Each syntax category is

m a precedence (Pratt) parser composed of a set of leading and trailing
parsers

m with per-parser precedences
m following the longest parse rule

Macros

notation:arg "(" e ")" => e

This is just a macro.

syntax:arg "(" term ")" : term
macro_rules

| " (($e)) => "($e)

which can also be written as

macro:arg "(" e:term ")" : term => " ($e)

Macros

notation:arg "(" e ")" => e

This is just a macro.

syntax:arg " (" term ")" : term
macro_rules

| " (($e)) => "($e)

which can also be written as

macro:arg "(" e:term ")" : term => " ($e)
or, in this case

macro:arg "(" e:term ")" : term => return e

Quotations
"(let $id:ident $[$binders]lx $[: $ty?]? := $val; $body)

has type Syntax in patterns.

has type m Syntax given MonadQuotation min terms.
id has type TSyntax "ident.

val and body have type TSyntax " term.

Quotations

"(let $id:ident $[$binders]lx $[: $ty?]? := $val; $body)

has type Syntax in patterns.

has type m Syntax given MonadQuotation min terms.
id has type TSyntax "ident.

val and body have type TSyntax " term.

binders hastype Array (TSyntax "letIdBinder).
ty? hastype Option (TSyntax “term).

Scope of Hygiene

macro "foo" : term => do
let a « “(rfl)
“(fun rfl => $%$a)

This unfolds to the identity function. Hygiene works per-macro.

Scope of Hygiene

macro "foo" : term => do
let a « “(rfl)
“(fun rfl => $a)

This unfolds to the identity function. Hygiene works per-macro.
Nested scopes can be opened with withFreshMacroScope.

destruct (as : List Var) (x : Syntax) (body : Syntax) : MacroM Syntax := do
match as with
| [a, bl => "(let $a:ident := $x.1; let $b:ident := $x.2; $body)
| a :: as => withFreshMacroScope do
let rest « destruct as (« “(x)) body
“(let $a:ident := $x.1; let x := $x.2; $rest)
| _ => unreachable!

Summary: Macros

Macros are syntax-to-syntax translations

m applied iteratively and recursively

m associated with a specific parser and tried in a specific order
a with “well-behaved” (hygienic) name capturing semantics

Unexpanders: simple pretty printers

inductive Exists {a : Sort u} (p : a » Prop) : Prop where
/—— Existential introduction. If "a : o and 'h : p a’,
then “(a, h) is a proof that "3 x : o, p X . =/
| intro (w : a) (h : p w) : Exists p

macro "3" xs:explicitBinders ", " b:term : term => expandExplicitBinders " “Exists xs b

Unexpanders: simple pretty printers

inductive Exists {a : Sort u} (p : a -» Prop) : Prop where
/— Existential introduction. If a : o and "h : p a’,
then “(a, h) is a proof that "3 x : o, p X . =/
| intro (w : a) (h : p w) : Exists p

macro "3" xs:explicitBinders ", " b:term : term => expandExplicitBinders " “Exists xs b

@[app_unexpander Exists] def unexpandExists : Lean.PrettyPrinter.Unexpander
| “($(_) fun $x:ident => 3 $xs:binderIdent*, $b) => (3 $x:ident $xs:binderIdent*, $b)
| “($(_) fun $x:ident => $b) => (3 $x:ident, $b)

| “($(_) fun ($x:ident : $t) => $b) => (3 ($x:ident : $t), $b)

| => throw ()

Lean is a platform for Domain-Specific Languages (DSLSs)

Extensible syntax.

Hygienic macros.

Extensible elaborator & pretty printer.

You can design DSLs, write code using them, and reason about this code.

Extensible LSP server coming soon.

String Interpolation: a micro DSL

def foo (x : Nat) : IO Unit :=
let y :i=x +1
I0.println s!®x: {x¥, y: dy}* ——

x: " ++ toString x ++ ", y: " ++ toString y

#eval foo 5

— X: 5, y: 6

Started as a Lean example!

String Interpolation: a micro DSL

def foo (x : Nat) : IO Unit :=
lety i=x +1
I10.println s!"x: {x}, y: {y}*— "x: " ++ toString x ++ ", y: " ++ toString y

#eval foo 5
== X: 5, y& 6

Started as a Lean example!

partial def interpolatedStrFn (p : ParserFn) : ParserFn := fun ¢ s =>
let input := c.input
let stackSize := s.stackSize
let rec parse (startPos : String.Pos) (c : ParserContext) (s : ParserState) : ParserState :=
let i iI= S.pos

if input.atEnd i then
let s := s.pushSyntax Syntax.missing
let s := s.mkNode interpolatedStrKind stackSize
s.setError "unterminated string literal"

else
let curr := input.get i
let s = s.setPos (input.next i)
if curr == "\"' then

let s := mkNodeToken interpolatedStrLitKind startPos c s
s.mkNode interpolatedStrKind stackSize

“do” notation: another DSL

Introduced by the Haskell programming language.

do { x1 <- actionl
; X2 <- action2
; mk action3 x1 x2 }

l

actionl >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2))

Lean has many extensions: nested actions, reassignments, for-loops, etc.

“do” notation: another DSL

def Poly.eval? (e : Poly) (a : Assignment)
let mut r := 0
for (c, x) in e.val do
if let some v := a.get? x then
r:=r + c*v
else
return none
return r

: Option Rat

:= Id.run do

Using “do” notation to expand interpolated string notation

def expandInterpolatedStrChunks (chunks : Array Syntax) (mkAppend : Syntax - Syntax - MacroM Syntax)
(mkElem : Syntax - MacroM Syntax) : MacroM Syntax := do
let mut 1 := @
let mut result := Syntax.missing
for elem in chunks do
let elem « match elem.isInterpolatedStrLit? with
| none => mkElem elem
| some str => mkElem (Syntax.mkStrLit str)
if i == 0 then

result := elem
else

result « mkAppend result elem
1=t

return result

def expandInterpolatedStr (interpStr : TSyntax interpolatedStrKind) (type : Term) (toTypeFn : Term) : MacroM Term := d
let r « expandInterpolatedStrChunks interpStr.raw.getArgs (fun a b => “($a ++ $b)) (fun a => " ($toTypeFn $a))
“(($r : $type))

Extending the anonymous constructor notation

Anonymous constructor notation for inductive types with one constructor.

structure Person where
name : String
age : Nat

def mkPerson (n : String) (a : Nat) : Person :
(n, a)

theorem mkAndSelf {p : Prop} (h : p) : p A p :=
(h, h)

example : 1 =1A1=1 :=
mkAndSelf (Eq.refl 1)

Extending the anonymous constructor notation

Let’s define a notation that tries to find a constructor with the right number of
arguments.

import Lean

syntax (name := anonCtorExt) "¢ " term,x,? " »"' : term

Extending the anonymous constructor notation

syntax (name := anonCtorExt) "¢ " term,x,? ")" : term

open Lean Meta Elab Term in
@[term_elab anonCtorExt] def elabAnonCtorExt : TermElab := fun stx expectedType? => do
match stx with
| ~(« $[%args],* ») =>
for ctorName in (« getCtors expectedType?) do
let ctorInfo « getConstInfoCtor ctorName
if ctorInfo.numFields == args.size then
let newStx « " ($(mkCIdentFrom stx ctorName) $(args)x)
return (< withMacroExpansion stx newStx (elabTerm newStx expectedType?))
throwError "did not find compatible constructor"
| _ => throwUnsupportedSyntax

where
getCtors (expectedType? : Option Expr) : MetaM (List Name) := do
let some type := expectedType? | throwError "expected type is not known"
let .const declName .. := (« whnf type).getAppFn | throwError "inductive expected"

let .inductInfo val « getConstInfo declName | throwError "inductive expected"
return val.ctors

Extending the anonymous constructor notation

let a : Unit := ¢
let b : List Nat :
let ¢ : List Nat :
let d : List Nat :

O
(2, b)
(1, C;)

have : b = [] := rfl
have = ¢ = [2] := rfl
have : d = [1, 2] := rfl

Extending the anonymous constructor notation

inductive expected Lean 4

def alList (View Problem (XF8) No quick fixes available
let a := M
a ++ a

Extending the anonymous constructor notation

open Lean Meta Elab Term in
@[term_elab anonCtorExt] def elabAnonCtorExt : TermElab := fun stx expectedType? => do
match stx with
| “(« $[%args],x)) =>
tryPostponeIlfNoneOrMVar expectedType? <
for ctorName in (« getCtors expectedType?) do

def aList (b : List Nat) : List Nat :=
let a := (1, b)
a ++ a3

Interactive Tactics: another DSL

theorem State.erase_le_of_le_cons (h : o' < (x, v) :: o) : o'.erase x < 0 := by
intro y w hf'
by _cases hxy : x =y <;> simp [x] at hf'
have hf := h hf'
simp [hxy, Ne.symm hxy] at hf
assumption

Interactive Tactics: another DSL

@[builtin_tactic Lean.Parser.Tactic.intro] def evallntro : Tactic := fun stx => do
match stx with
| “(tactic| intro) => introStep none " _
| “(tactic| intro $h:ident) => introStep h h.getId
| “(tactic| intro _%$tk) => introStep tk °_

/- Type ascription -/

| “(tactic| intro ($h:ident : $type:term)) => introStep h h.getId type

/- We use “@h" at the match-discriminant to disable the implicit lambda feature -/

| “(tactic| intro $pat:term) => evalTactic (« ‘(tactic| intro h; match @h with | $pat:term => ?_; try clear h))
| “(tactic| intro $h:term $hs:termx) => evalTactic (« "(tactic| intro $h:term; intro $hs:termx))

| _ => throwUnsupportedSyntax

Conclusion

| V\lis an extensible theorem prover. http://leanprover.github.io

Decentralized collaboration.

The Mathlib community will change how mathematics is done and taught.

It is not just about proving but also understanding complex objects and proofs,

getting new insights, and navigating through the "thick jungles” that are beyond our
cognitive power.

