Duality for Clans: a Refinement of Gabriel–Ulmer Dualiy

Jonas Frey

Interactions of Proof Assistants and Mathematics

Regensburg, September 2023

https://arxiv.org/abs/2308.11967

Functorial Semantics: Lawvere Theories

Theorem (Lawvere¹)

For every **algebraic theory** \mathbb{T} (i.e. theory of groups, rings, ...), there exists a small category $\mathcal{C}[\mathbb{T}]$ with finite products such that

```
\mathsf{Mod}(\mathbb{T}) \simeq \mathsf{FP}(\mathcal{C}[\mathbb{T}],\mathsf{Set})
```

- $\mathcal{C}[\mathbb{T}]$ is is known as the Lawvere theory of \mathbb{T}
- Syntactic description of $\mathcal{C}[\mathbb{T}]$:
 - objects: natural numbers $n, k, \dots \in \mathbb{N}$
 - $C[\mathbb{T}](n,k) = \{\mathbb{T}\text{-terms in vars } x_1, \ldots, x_n\}^k$
- Semantic description: Yoneda & : $\mathcal{C}[\mathbb{T}]^{op} \to \mathsf{FP}(\mathcal{C}[\mathbb{T}],\mathsf{Set})$ identifies $\mathcal{C}[\mathbb{T}]^{op}$ finitely generated free models

Principle of functorial semantics:

- theories are identified with structured categories, and
- models correspond to structure-preserving functors into Set (or another semantic 'background category')

¹ F.W. Lawvere. "Functorial semantics of algebraic theories". In: *Proceedings of the National Academy of Sciences of the United States of America* (1963)

Finite product theories

Moving away from syntax, we define:

Definition

- A finite-product theory is a small category with finite products.
- a model of a finite-product theory C is a functor $A : C \to Set$ which preserves finite products.

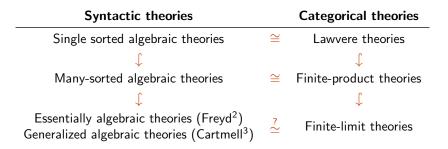
Finite-product theories correspond to many-sorted algebraic theories, such as

- the theory of reflexive graphs
- the theory of graded rings/modules
- the theory of modules over non-constant base ring

• ...

but there are algebraic gadgets that cannot be represented by finite-product theories, notably **categories**!

How to include the theory of categories ?



² P. Freyd. "Aspects of topoi". In: Bulletin of the Australian Mathematical Society (1972).

³ J. Cartmell. "Generalised algebraic theories and contextual categories". In: Annals of Pure and Applied Logic (1986).

Finite-limit theories

Definition

- A finite-limit theory is a small category with finite limits
- a model of a finite-limit theory is a finite-limit preserving functor $A:\mathcal{C}\to\mathsf{Set}$

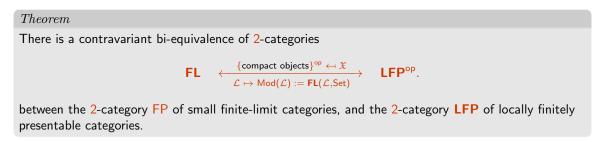
Finite-limit theories can be **reconstructed** from their categories of models, which gives a nice duality theory:

Proposition

Let $\ensuremath{\mathcal{C}}$ be a finite-limit theory.

- 1. For every $\Gamma \in \mathcal{C}$, the representable functor $\mathcal{C}(\Gamma, -) : \mathcal{C} \to \mathsf{Set}$ is a model.
- 2. A model $A \in Mod(\mathcal{C})$ is representable by an object of \mathcal{C} iff it is **compact**, i.e. $Mod(\mathcal{C})(A, -)$ preserves filtered colimits.
- The category Mod(C) = FP(C, Set) is locally finitely presentable, i.e. cocomplete with a dense set of compact objects.

Duality for finite-limit theories (Gabriel-Ulmer duality⁴)



• Categories are representable by a finite-limit theory since Cat is locally finitely presentable.

⁴ P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.

Generalized algebraic theories (GATs)

GATs generalize many-sorted algebraic theories by introducing **sort dependency**. Best explained with an example:

The GAT \mathbb{T}_{Cat} of categories $\vdash O$ $xy: O \vdash A(x,y)$ $x: O \vdash id(x): A(x,x)$ $xyz: O, f: A(x,y), g: A(y,z) \vdash g \circ f: A(x,z)$ $xy: O, f: A(x,y) \vdash id(y) \circ f = f$ $xy: O, f: A(x,y) \vdash f \circ id(x) = f$ $w \times yz: O, e: A(w,x), f: A(x,y), g: A(y,z) \vdash (g \circ f) \circ e = g \circ (f \circ e)$

GATs vs finite-limit theories, clans

GATs (and ess. alg. theories) are equally expressive as finite-limit theories w.r.t. models in Set:

- For every GAT \mathbb{T} , the category $Mod(\mathbb{T})$ is locally finitely presentable, and
- For every locally finitely presentable category \mathfrak{X} there exists a GAT \mathbb{T} with $\mathsf{Mod}(\mathbb{T}) \cong \mathfrak{X}$

However there is a mismatch, since the syntactic category (category of contexts) of a GAT is generally not a finite-limit category, but only a clan!

Definition

A clan is a small category \mathcal{T} with terminal object 1, equipped with a class $\mathcal{T}_{t} \subseteq \operatorname{mor}(\mathcal{T})$ of morphisms - called **display maps** and written → - such that

1. pullbacks of display maps along all maps exist and are display maps $A^+ \xrightarrow{s^+} \Gamma^+$ \downarrow^p ,

 $\Lambda \xrightarrow{s} \Gamma$

- 2. display maps are closed under composition, and
- 3. isomorphisms and terminal projections $\Gamma \rightarrow 1$ are display maps.
- Definition due to Taylor⁵, name due to Joyal⁶

⁶ A. Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

⁵ P. Taylor. "Recursive domains, indexed category theory and polymorphism". PhD thesis. University of Cambridge, 1987. § 4.3.2.

Examples

- Syntactic category $\mathcal{C}[\mathbb{T}]$ of a GAT \mathbb{T} is a clan:
 - Objects: type-theoretic contexts
 - Morphisms: substitutions (modulo definitional equality)
 - Terminal object empty context
 - ${\scriptstyle \circ }$ Display maps: context projections $(\Gamma, \Delta) \rightarrow \Gamma$
- Finite-product theories C can be viewed as clans with $C_{\dagger} = \{\text{product projections}\}$ (*'FP-clans'*)
- Finite-limit theories \mathcal{L} can be viewed as clans with $\mathcal{L}_{\dagger} = \text{mor}(\mathcal{L})$ ('*FL-clans'*)

Definition

A model of a clan \mathcal{T} is a functor $A: \mathcal{T} \to \text{Set}$ which preserves 1 and pullbacks of display-maps.

- The category $\mathsf{Mod}(\mathcal{T}) \subseteq [\mathcal{T},\mathsf{Set}]$ of models is l.f.p. and contains $\mathcal{T}^{\mathsf{op}}$.
- For FP-clans $(\mathcal{C}, \mathcal{C}_{\dagger})$ we have $Mod(\mathcal{C}, \mathcal{C}_{\dagger}) = FP(\mathcal{C}, Set)$.
- For FL-clans $(\mathcal{L}, \mathcal{L}_{\dagger})$ we have $Mod(\mathcal{L}, \mathcal{L}_{\dagger}) = FL(\mathcal{L}, Set)$.



$The \ clan \ of \ categories$

- The syntactic category $\mathcal{C}[\mathbb{T}_{\mathsf{Cat}}]$ of the GAT $\mathbb{T}_{\mathsf{Cat}}$ has contexts

 $(x_1 \ldots x_n : O, f_1 : A(x_{i_1}, x_{j_1}), \ldots f_k : A(x_{i_k}, x_{j_k}))$

as objects, and substitutions as morphisms.

• As for any clan, we have the Yoneda embedding

 $\texttt{\texttt{L}} \ : \ \mathcal{C}[\mathbb{T}_{\mathsf{Cat}}]^{\mathsf{op}} \ \longrightarrow \ \mathsf{Mod}(\mathcal{C}[\mathbb{T}_{\mathsf{Cat}}]) \simeq \mathsf{Cat}.$

- Its image is the full subcategory of Cat on free categories on finite graphs
- Display maps correspond (contravariantly) to graph inclusions

Towards duality for clans

- Note that the different clans can have the same category of Set-models
- For example, algebraic theories give rise to clans either as finite-product theories or as finite-limit theories
- To get a duality theory for clans, have to refine Gabriel-Ulmer duality.
- We do this by equipping the categories of models with additional data in form of a **weak** factorization system

 $The\ extension-full\ weak\ factorization\ system$

Definition

```
Let \mathcal{T} be a clan and \& : \mathcal{T}^{op} \to \mathsf{Mod}(\mathcal{T}). Define w.f.s. (\mathcal{E}, \mathcal{F}) on \mathsf{Mod}(\mathcal{T}):
```

 $\mathcal{F} = \mathsf{RLP}(\mathfrak{L}(\mathcal{T}^{\dagger}))$ 'full maps' $\mathcal{E} = \mathsf{LLP}(\mathcal{F})$ 'extensions'

Call $A \in Mod(\mathcal{T})$ a 0-extension, if $(0 \rightarrow A) \in \mathcal{E}$.

- Representable models $\sharp(\Gamma) = \mathcal{T}(\Gamma, -)$ are 0-extensions since all $\Gamma \rightarrow 1$ are display maps.
- The same weak factorization system was also introduced by S. Henry⁷.

⁷ S. Henry. "Algebraic models of homotopy types and the homotopy hypothesis". In: *arXiv preprint arXiv:1609.04622* (2016).

Examples

- $\bullet~\mbox{If}~{\ensuremath{\mathcal{T}}}$ is a FL-clan, then
 - only isos are full in $Mod(\mathcal{T})$, and
 - all maps are extensions.
- If ${\boldsymbol{\mathcal{T}}}$ is a FP-clan, then
 - $Mod(\mathcal{T})$ is Barr-exact,
 - the full maps are the regular epis, and
 - the 0-extensions are the **projective objects**.
- In Cat = $Mod(\mathbb{T}_{Cat})$:
 - full maps are functors that are full and surjective on objects,
 - and 0-extensions are free categories.

Duality for clans

Theorem

There is a contravariant bi-equivalence of 2-categories

$$\begin{array}{ccc} \mathsf{Clan}_{\mathsf{cc}} & \xleftarrow{} & \mathsf{CZE}(\mathfrak{X})^{\mathsf{op}} \leftrightarrow \mathfrak{X} \\ & & & \mathcal{T} \mapsto \mathsf{Mod}(\mathcal{T}) \end{array} & \mathbf{cAlg}^{\mathsf{op}} \end{array}$$

where

- Clan_{cc} is the 2-category of Cauchy-complete⁸ clans,
- cAlg is the 2-category of clan-algebraic categories, i.e. l.f.p. categories \hat{x} equipped with an 'extension/full' WFS (\mathcal{E}, \mathcal{F}) such that
 - 1. the full subcategory $CZE(\mathfrak{X}) \subseteq \mathfrak{X}$ on compact 0-extensions is dense in \mathfrak{X} ,
 - 2. $(\mathcal{E}, \mathcal{F})$ is cofibrantly generated by maps in $\mathsf{CZE}(\mathfrak{X})$, and
 - 3. \mathfrak{X} has full and effective quotients of componentwise-full equivalence relations.

As special cases for FL-clans and FP-clans we recover

- Gabriel–Ulmer duality, and
- Adamek–Rosicky-Vitale's characterization of **algebraic categories** as Barr-exact LFP categories which are generated by compact projectives⁹.

⁸A clan \mathcal{T} is Cauchy-complete if idempotents split in \mathcal{T} , and retracts of display maps are display maps. ⁹Theorem 9.15 in J. Adámek, J. Rosický, and E.M. Vitale. *Algebraic theories: a categorical introduction to general algebra*. Cambridge University Press, 2010

$Proof\ sketch$

- Have to show that:
 - 1. $CZE(\mathfrak{X})^{op}$ is a clan for all clan-algebraic categories \mathfrak{X} (with extensions as display maps).
 - 2. $Mod(\mathcal{T})$ is clan-algebraic for all clans \mathcal{T} .
 - 3. $\mathsf{CZE}(\mathfrak{X})^{\mathsf{op}}\operatorname{\mathsf{-Mod}}\simeq\mathfrak{X}$ for all clan-algebraic categories \mathfrak{X} .
 - 4. $\mathcal{T} \simeq \mathsf{CZE}(\mathsf{Mod}(\mathcal{T}))^{\mathsf{op}}$ for all Cauchy-complete clans \mathcal{T} .
- $\bullet~1$ and 2 are easy
- For 3 we use a Reedy factorization on 2-truncated semi-simplicial models
- For 4 we use the **fat small object argument**¹⁰, which implies that 0-extensions are filtered colimits of representable algebras.

¹⁰ M. Makkai, J. Rosicky, and L. Vokrinek. "On a fat small object argument". In: Advances in Mathematics (2014).

Models in Higher Types

Models in higher types

- The following is known to experts:
- Let \mathbb{T} be an algebraic theory (e.g. monoids), let $\mathcal{C}[\mathbb{T}]$ and $\mathcal{L}[\mathbb{T}]$ be the associated finite-product theory and finite-limit theory, and let \mathcal{S} be the ∞ -category of spaces / homotopy types. Then
 - $FL(\mathcal{L}[\mathbb{T}], \mathbb{S}) \simeq FL(\mathcal{L}[\mathbb{T}], Set)$ (since FL-functors preserve truncation levels), but
 - $\mathsf{FP}(\mathcal{C}[\mathbb{T}], \mathbb{S}) \supseteq \mathsf{FP}(\mathcal{C}[\mathbb{T}], \mathsf{Set}) \longrightarrow \mathsf{e.g.} \mathsf{FP}(\mathcal{C}[\mathbb{T}_{\mathsf{Mon}}], \mathbb{S})$ is the ∞ -category of A_{∞} -algebras.
- In¹¹, Cesnavicius and Scholze refer to higher models of a Lawvere theory as 'animated models'.
- Moral: By being 'slimmer', finite-product theories leave room for higher coherences when interpreted in higher types.
- With clans, we can **interpolate** between FP-theories and FL-theories, and thus define higher models of varying levels of strictness for the same classical algebraic structure.

¹¹ K. Cesnavicius and P. Scholze. "Purity for flat cohomology". In: arXiv preprint arXiv:1912.10932 (2019).

Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:

- $(\mathcal{E}_1,\mathcal{F}_1)$ is cofib. generated by $\{(0
 ightarrow 1),(2
 ightarrow 2)$
- $(\mathcal{E}_2,\mathcal{F}_2)$ is cofib. generated by $\{(0 \rightarrow 1), (2 \rightarrow 2), (2 \rightarrow 1)\}$
- $(\mathcal{E}_3,\mathcal{F}_3)$ is cofib. generated by $\{(0 \to 1), (2 \to 2), (\mathbb{P} \to 2)\}$
- $(\mathcal{E}_4, \mathcal{F}_4)$ is cofib. generated by $\{(0 \to 1), (2 \to 2), (\mathbb{P} \to 2), (2 \to 1)\}$ where $\mathbb{P} = (\bullet \rightrightarrows \bullet)$.

The right classes are:

 $\begin{aligned} \mathcal{F}_1 &= \{ \text{full and surjective-on-objects functors} \} \\ \mathcal{F}_2 &= \{ \text{full and bijective-on-objects functors} \} \\ \mathcal{F}_3 &= \{ \text{fully faithful and surjective-on-objects functors} \} \\ \mathcal{F}_4 &= \{ \text{isos} \} \end{aligned}$

Note that \mathcal{F}_3 is the class of trivial fibrations for the canonical model structure on **Cat**.

These correspond to the following clans:

$$\begin{split} \mathcal{T}_1 &= \{ \text{free cats on fin. graphs} \}^{\text{op}} \\ \mathcal{T}_2 &= \{ \text{free cats on fin. graphs} \}^{\text{op}} \\ \mathcal{T}_3 &= \{ \text{f.p. cats} \}^{\text{op}} \\ \mathcal{T}_4 &= \{ \text{f.p. cats} \}^{\text{op}} \end{split}$$

$$\begin{split} \mathcal{T}_{1}^{\dagger} &= \{ \text{graph inclusions} \} \\ \mathcal{T}_{2}^{\dagger} &= \{ \text{injective-on-edges maps} \} \\ \mathcal{T}_{3}^{\dagger} &= \{ \text{injective-on-objects functors} \} \\ \mathcal{T}_{4}^{\dagger} &= \{ \text{all functors} \} \end{split}$$

Syntax: four GATs for categories

- Syntactially, adding (2 → 1) to the generators turns the diagonal of the type ⊢ O of objects into a display map. This corresponds to adding an extensional identity type with rules
 - $xy: O \vdash E(x,y)$ type • $x: O \vdash r: E(x,x)$ type • $xy: O, p: E(x,y) \vdash x = y$ • $xy: O, pq: E(x,y) \vdash p = q$

to the GAT.

• Similarly, adding $(\mathbb{P} \rightarrow 2)$ corresponds to adding an extensional identity type with rules

• $xy: O, fg: A(x,y) \vdash F(f,g)$ type • $xy: O, f: A(x,y) \vdash s: F(f,f)$ • $xy: O, fg: A(x,y), p: F(f,g) \vdash f = g$ • $xy: O, fg: A(x,y), pq: F(f,g) \vdash p = q$

to the dependent type $x y : O \vdash A(x, y)$ of arrows.

Models of \mathcal{T}_1 in \mathcal{S} are **Segal spaces**, and adding extensional identity types to $\vdash O$ or to $x y : O \vdash A(x, y)$ forces the respective types to be 0-truncated. Thus:

 $\begin{array}{l} \infty \operatorname{\mathsf{-Mod}}(\mathcal{T}_1) = \{ \operatorname{Segal spaces} \} \\ \infty \operatorname{\mathsf{-Mod}}(\mathcal{T}_2) = \{ \operatorname{Segal categories} \} \\ \infty \operatorname{\mathsf{-Mod}}(\mathcal{T}_3) = \{ \operatorname{pre-categories} \} \\ \infty \operatorname{\mathsf{-Mod}}(\mathcal{T}_4) = \{ \operatorname{discrete 1-categories} \} \end{array}$

Comparison with Benedikt's talk

- Similarity: look at higher models of set-sevel theories
- Clans are more abstract than the FOLDS-theories that Benedikt mentioned.
- Missing structure of type dependency comes back through FSOA, which in particular requires clans to be strict categories

Thank you for your attention!