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Functorial Semantics: Lawvere Theories

Theorem (Lawvere1)

For every algebraic theory T (i.e. theory of groups, rings, . . . ), there exists a small category C[T]
with finite products such that

Mod(T) ≃ FP(C[T],Set)

• C[T] is is known as the Lawvere theory of T
• Syntactic description of C[T]:

objects: natural numbers n, k, · · · ∈ N
C[T](n, k) = {T-terms in vars x1, . . . , xn}k

• Semantic description: Yonedaよ : C[T]op → FP(C[T],Set) identifies C[T]op finitely
generated free models

Principle of functorial semantics:

• theories are identified with structured categories, and

• models correspond to structure-preserving functors into Set (or another semantic ‘background
category’)

1 F.W. Lawvere. “Functorial semantics of algebraic theories”. In: Proceedings of the National Academy of Sciences
of the United States of America (1963)



Finite product theories

Moving away from syntax, we define:

Definition

• A finite-product theory is a small category with finite products.

• a model of a finite-product theory C is a functor A : C → Set which preserves finite products.

Finite-product theories correspond to many-sorted algebraic theories, such as

• the theory of reflexive graphs

• the theory of graded rings/modules

• the theory of modules over non-constant base ring

• . . .

but there are algebraic gadgets that cannot be represented by finite-product theories, notably
categories!



How to include the theory of categories ?

Syntactic theories Categorical theories

Single sorted algebraic theories ∼= Lawvere theories

↪→ ↪→
Many-sorted algebraic theories ∼= Finite-product theories

↪→ ↪→

Essentially algebraic theories (Freyd2) ?≃ Finite-limit theories
Generalized algebraic theories (Cartmell3)

2 P. Freyd. “Aspects of topoi”. In: Bulletin of the Australian Mathematical Society (1972).
3 J. Cartmell. “Generalised algebraic theories and contextual categories”. In: Annals of Pure and Applied Logic

(1986).



Finite-limit theories

Definition

• A finite-limit theory is a small category with finite limits

• a model of a finite-limit theory is a finite-limit preserving functor A : C → Set

Finite-limit theories can be reconstructed from their categories of models, which gives a nice duality
theory:

Proposition

Let C be a finite-limit theory.

1. For every Γ ∈ C, the representable functor C(Γ,−) : C → Set is a model.

2. A model A ∈ Mod(C) is representable by an object of C iff it is compact, i.e. Mod(C)(A,−)
preserves filtered colimits.

3. The category Mod(C) = FP(C,Set) is locally finitely presentable, i.e. cocomplete with a dense
set of compact objects.



Duality for finite-limit theories (Gabriel-Ulmer duality4)

Theorem

There is a contravariant bi-equivalence of 2-categories

FL
{compact objects}op ← [ X←−−−−−−−−−−−−−−−−−→
L 7→ Mod(L) := FL(L,Set)

LFPop.

between the 2-category FP of small finite-limit categories, and the 2-category LFP of locally finitely
presentable categories.

• Categories are representable by a finite-limit theory since Cat is locally finitely presentable.

4 P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer-Verlag, 1971.



Generalized algebraic theories (GATs)

GATs generalize many-sorted algebraic theories by introducing sort dependency. Best explained with
an example:

The GAT TCat of categories

⊢ O

x y : O ⊢ A(x , y)

x : O ⊢ id(x) : A(x , x)

x y z : O , f : A(x , y) , g : A(y , z) ⊢ g◦f : A(x , z)

x y : O , f : A(x , y) ⊢ id(y)◦f = f

x y : O , f : A(x , y) ⊢ f ◦id(x) = f

w x y z : O , e : A(w , x) , f : A(x , y) , g : A(y , z) ⊢ (g◦f )◦e = g◦(f ◦e)



GATs vs finite-limit theories, clans

GATs (and ess. alg. theories) are equally expressive as finite-limit theories w.r.t. models in Set:

• For every GAT T, the category Mod(T) is locally finitely presentable, and

• For every locally finitely presentable category X there exists a GAT T with Mod(T) ∼= X

However there is a mismatch, since the syntactic category (category of contexts) of a GAT is generally
not a finite-limit category, but only a clan!

Definition

A clan is a small category T with terminal object 1, equipped with a class T† ⊆ mor(T ) of morphisms
– called display maps and written _ – such that

1. pullbacks of display maps along all maps exist and are display maps
∆+
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s

,

2. display maps are closed under composition, and

3. isomorphisms and terminal projections Γ _ 1 are display maps.

• Definition due to Taylor5, name due to Joyal6

5 P. Taylor. “Recursive domains, indexed category theory and polymorphism”. PhD thesis. University of Cambridge,
1987, § 4.3.2.

6 A. Joyal. “Notes on clans and tribes”. In: arXiv preprint arXiv:1710.10238 (2017).



Examples

• Syntactic category C[T] of a GAT T is a clan:

Objects: type-theoretic contexts
Morphisms: substitutions (modulo definitional equality)
Terminal object empty context
Display maps: context projections (Γ,∆) → Γ

• Finite-product theories C can be viewed as clans with C† = {product projections} (‘FP-clans’)
• Finite-limit theories L can be viewed as clans with L† = mor(L) (‘FL-clans’)



Models

Definition

A model of a clan T is a functor A : T → Set which preserves 1 and pullbacks of display-maps.

• The category Mod(T ) ⊆ [T ,Set] of models is l.f.p. and contains T op.

• For FP-clans (C, C†) we have Mod(C, C†) = FP(C,Set).
• For FL-clans (L,L†) we have Mod(L,L†) = FL(L,Set).

T op

Mod(T ) [T ,Set]

よ

⊆



The clan of categories

• The syntactic category C[TCat] of the GAT TCat has contexts

(x1 . . . xn : O, f1 : A(xi1 , xj1), . . . fk : A(xik , xjk ))

as objects, and substitutions as morphisms.

• As for any clan, we have the Yoneda embedding

よ : C[TCat]
op −→ Mod(C[TCat]) ≃ Cat.

• Its image is the full subcategory of Cat on free categories on finite graphs

• Display maps correspond (contravariantly) to graph inclusions



Towards duality for clans

• Note that the different clans can have the same category of Set-models

• For example, algebraic theories give rise to clans either as finite-product theories or as finite-limit
theories

• To get a duality theory for clans, have to refine Gabriel–Ulmer duality.

• We do this by equipping the categories of models with additional data in form of a weak
factorization system



The extension–full weak factorization system

Definition

Let T be a clan andよ : T op → Mod(T ). Define w.f.s. (E ,F) on Mod(T ):

F = RLP(よ(T †)) ‘full maps’

E = LLP(F) ‘extensions’

Call A ∈ Mod(T ) a 0-extension, if (0→ A) ∈ E .

• Representable modelsよ(Γ) = T (Γ,−) are 0-extensions since all Γ _ 1 are display maps.

• The same weak factorization system was also introduced by S. Henry7.

7 S. Henry. “Algebraic models of homotopy types and the homotopy hypothesis”. In: arXiv preprint
arXiv:1609.04622 (2016).



Examples

• If T is a FL-clan, then

only isos are full in Mod(T ), and
all maps are extensions.

• If T is a FP-clan, then

Mod(T ) is Barr-exact,
the full maps are the regular epis, and
the 0-extensions are the projective objects.

• In Cat = Mod(TCat):

full maps are functors that are full and surjective on objects,
and 0-extensions are free categories.



Duality for clans

Theorem

There is a contravariant bi-equivalence of 2-categories

Clancc
CZE(X)op ←[ X←−−−−−−−−−−−→
T 7→ Mod(T )

cAlgop

where

• Clancc is the 2-category of Cauchy-complete8 clans,

• cAlg is the 2-category of clan-algebraic categories, i.e. l.f.p. categories X equipped with an
‘extension/full’ WFS (E ,F) such that

1. the full subcategory CZE(X) ⊆ X on compact 0-extensions is dense in X,
2. (E ,F) is cofibrantly generated by maps in CZE(X), and
3. X has full and effective quotients of componentwise-full equivalence relations.

As special cases for FL-clans and FP-clans we recover

• Gabriel–Ulmer duality, and

• Adamek–Rosicky-Vitale’s characterization of algebraic categories as Barr-exact LFP categories
which are generated by compact projectives9.

8A clan T is Cauchy-complete if idempotents split in T , and retracts of display maps are display maps.
9Theorem 9.15 in J. Adámek, J. Rosický, and E.M. Vitale. Algebraic theories: a categorical introduction to general

algebra. Cambridge University Press, 2010



Proof sketch

• Have to show that:

1. CZE(X)op is a clan for all clan-algebraic categories X (with extensions as display maps).
2. Mod(T ) is clan-algebraic for all clans T .
3. CZE(X)op-Mod ≃ X for all clan-algebraic categories X.
4. T ≃ CZE(Mod(T ))op for all Cauchy-complete clans T .

• 1 and 2 are easy

• For 3 we use a Reedy factorization on 2-truncated semi-simplicial models

• For 4 we use the fat small object argument10, which implies that 0-extensions are filtered
colimits of representable algebras.

10 M. Makkai, J. Rosicky, and L. Vokrinek. “On a fat small object argument”. In: Advances in Mathematics (2014).



Models in Higher Types



Models in higher types

• The following is known to experts:

• Let T be an algebraic theory (e.g. monoids), let C[T] and L[T] be the associated finite-product
theory and finite-limit theory, and let S be the ∞-category of spaces / homotopy types. Then

FL(L[T], S) ≃ FL(L[T], Set) (since FL-functors preserve truncation levels), but
FP(C[T], S) ⊋ FP(C[T], Set) — e.g. FP(C[TMon], S) is the ∞-category of A∞-algebras.

• In11, Cesnavicius and Scholze refer to higher models of a Lawvere theory as ‘animated models’.

• Moral: By being ‘slimmer’, finite-product theories leave room for higher coherences when
interpreted in higher types.

• With clans, we can interpolate between FP-theories and FL-theories, and thus define higher
models of varying levels of strictness for the same classical algebraic structure.

11 K. Cesnavicius and P. Scholze. “Purity for flat cohomology”. In: arXiv preprint arXiv:1912.10932 (2019).



Four clan-algebraic weak factorization systems on Cat

Cat admits several clan-algebraic weak factorization systems:

• (E1,F1) is cofib. generated by {(0→ 1), (2→ 2) }
• (E2,F2) is cofib. generated by {(0→ 1), (2→ 2), (2→ 1)}
• (E3,F3) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2) }
• (E4,F4) is cofib. generated by {(0→ 1), (2→ 2), (P→ 2), (2→ 1)}

where P = (•⇒ •).

The right classes are:

F1 = {full and surjective-on-objects functors}
F2 = {full and bijective-on-objects functors}
F3 = {fully faithful and surjective-on-objects functors}
F4 = {isos}

Note that F3 is the class of trivial fibrations for the canonical model structure on Cat.



Four clans for categories

These correspond to the following clans:

T1 = {free cats on fin. graphs}op T †1 = {graph inclusions}

T2 = {free cats on fin. graphs}op T †2 = {injective-on-edges maps}

T3 = {f.p. cats}op T †3 = {injective-on-objects functors}

T4 = {f.p. cats}op T †4 = {all functors}



Syntax: four GATs for categories

• Syntactially, adding (2→ 1) to the generators turns the diagonal of the type ⊢ O of objects
into a display map. This corresponds to adding an extensional identity type with rules

x y : O ⊢ E(x , y) type
x : O ⊢ r : E(x , x)

x y : O , p : E(x , y) ⊢ x = y
x y : O , p q : E(x , y) ⊢ p = q

to the GAT.

• Similarly, adding (P→ 2) corresponds to adding an extensional identity type with rules

x y : O , f g : A(x , y) ⊢ F (f , g) type
x y : O , f : A(x , y) ⊢ s : F (f , f )

x y : O , f g : A(x , y) , p : F (f , g) ⊢ f = g
x y : O , f g : A(x , y) , p q : F (f , g) ⊢ p = q

to the dependent type x y : O ⊢ A(x , y) of arrows.



Models in higher types

Models of T1 in S are Segal spaces, and adding extensional identity types to ⊢ O or to
x y : O ⊢ A(x , y) forces the respective types to be 0-truncated. Thus:

∞-Mod(T1) = {Segal spaces}
∞-Mod(T2) = {Segal categories}
∞-Mod(T3) = {pre-categories}
∞-Mod(T4) = {discrete 1-categories}



Comparison with Benedikt’s talk

• Similarity: look at higher models of set-sevel theories

• Clans are more abstract than the FOLDS-theories that Benedikt mentioned.

• Missing structure of type dependency comes back through FSOA, which in particular requires
clans to be strict categories



Thank you for your attention!


