LISA — A Set-Theory Based Proof System

Simon Guilloud Sankalp Gambhir Viktor Kuncak

EPFL
School of Computer and Communication Sciences
Lausanne, Switzerland
{firstname.lastname}@epfl.ch

September 21, 2023



Introduction

LISA is a proof assistant in continuous development.
» Based on FOL and set theory
» LCF/de Bruijn model with a trusted kernel (but explicit proofs)

» Developed in Scala

2/18



Introduction

LISA is a proof assistant in continuous development.
» Based on FOL and set theory
» LCF/de Bruijn model with a trusted kernel (but explicit proofs)
» Developed in Scala

LISA’s ultimate goal is to serve both as prover for mathematical theorems and program
correctness.

2/18



Writing Proofs in LISA: Example

WO ~NO OB WN

== =
N = O ©

val x = variable
val P = predicate(1)
val f = function(1)

val fixedPointDoubleApplication = Theorem(
V(x, P(x) = P(f(x))) F P(x) = P(f(f(x)))
){
assume(Y(x, P(x) = P(f(x))))
val stepl = have(P(x) = P(f(x))) by InstantiateForall
val step2 = have(P(f(x)) = P(f(f(x)))) by InstantiateForall
have(thesis) by Tautology.from(stepl, step2)

}

3/18



LISA’s Logic: FOL

LISA uses First Order Logic as its foundational language.
» It has schematic predicate and function symbols (free second-order variables).

» This enables expression of axiom and theorem schemas.

"P (0) A Vx. ('P (x) = "P(x+ 1)) FVx.P(x)

4/18



LISA’s Logic: FOL

LISA uses First Order Logic as its foundational language.
» It has schematic predicate and function symbols (free second-order variables).

» This enables expression of axiom and theorem schemas.

"P (0) A Vx. ('P (x) = "P(x+ 1)) FVx.P(x)

» Those symbols can be instantiated, but cannot be bound and behave otherwise
like uninterpreted symbols.

» Does not change provability of non-schematic formulas!

4/18



LISA's Proof System: LK

LISA uses a variation of Sequent Calculus LK.

» Sequents ' = A, with T and A sets of formulas

5/18



LISA's Proof System: LK

LISA uses a variation of Sequent Calculus LK.
» Sequents ' = A, with T and A sets of formulas

» Introduction rule for each logical symbol on each side + Cut, Weakening

5/18



LISA's Proof System: LK

LISA uses a variation of Sequent Calculus LK.
» Sequents ' = A, with T and A sets of formulas
» Introduction rule for each logical symbol on each side + Cut, Weakening
» Deduced rules for efficiency:
» Instantiation of schematic symbols

> Substitution of equal terms/formulas.

5/18



LISA's Proof System: LK

LISA uses a variation of Sequent Calculus LK.
» Sequents ' = A, with T and A sets of formulas
» Introduction rule for each logical symbol on each side + Cut, Weakening
» Deduced rules for efficiency:
» Instantiation of schematic symbols

> Substitution of equal terms/formulas.

M+ ¢fs//f], A
Ms=tFo[t/fl,A

SubstE r+¢la/’pl. A SubstIff
R Y D

5/18



Proofs
» Proofs in Sequent Calculus are Directed Acyclic Graphs.

» In LISA, serialized into lists of proof steps.

» Dependence on axioms, definitions and previous theorems stated explicitly.

6/18



Proofs

» Proofs in Sequent Calculus are Directed Acyclic Graphs.
» In LISA, serialized into lists of proof steps.

» Dependence on axioms, definitions and previous theorems stated explicitly.

0 Hypothesis (o) )

1 Weakening(0) oo

2 RightImplies(1) = ¢, (¢ — )

3 LeftImplies(2,0) (p—=v)—>oko

4 RightImplies(3) F(p =)= 0)— ¢

6/18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

FbAa aAblc
Fc
Who wants a proof rejected because aAbZ bAa?

Cut

7/18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

FbAa aAblc
Fc
Who wants a proof rejected because aAbZ bAa?

Cut

» Solution: Heuristic? No

7/18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

FbAa aAblc
Fc
Who wants a proof rejected because aAbZ bAa?

Cut

» Solution: Heuristic? No
» Solution: replace syntactic equality checking by a more powerful equivalence
» But still efficiently decidable

» Sound approximation of Boolean algebra

7/18



Ortholattices

— Ortholattices

Commutativity
Associativity
Idempotence
Constants laws
Double negation
Excluded middle
De Morgan'’s law
Absorption

xXVy=yVXx
xV(yVz)=(xVy)Vz
XVXx=x
xv1li=1
X = X
xV-ax=1
(xVy)=-xA-y
xV(xAy)=x

8/18



Ortholattices

Commutativity xVy=yVx
Associativity xV(yVz)=(xVy)Vz
Idempotence xVXx=x
Constants laws xVv1l=1

Double negation X = X
Excluded middle xV-x=1

De Morgan's law S(xVy)=-xA-y
Absorption xV(xAy)=x

— Ortholattices
Boolean Algebra without distributivity

Distributivity: ‘ xV(yANz)=(xVy)A(xVz)

8/18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~or 1 hold?

9/18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~or 1 hold?

> Worst case O(n?) time

» Also alpha-equivalence, symmetry and reflexivity of equality...

9/18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~or 1 hold?

> Worst case O(n?) time

» Also alpha-equivalence, symmetry and reflexivity of equality...
» Proof Checker uses it instead of syntactic equality.

» Works particularly well in combination with substitution rules.

Other example:
Fl(avb)A(aVve)Vb
Favb

Restate

9/18



Ortholattices

Ortholattice-based reasoning has potential way beyond proof assistants
» Core part of Stainless (program verifier) now:
» Simplify formulas before passing them to SMT solver

» Normalization used for caching solved formulas

10/18



Why Set Theory

Most theorem provers are based on higher order logic or type theory
» HOL familiy, Isabelle, Coq, Lean...

But set theory has seen successful use too!
» Mizar, Isabelle/ZF, Isabelle/HOL/TG, TLA*

And it is the most widely accepted foundation of mathematics among mathematician
studying foundations.

11/18



ZFC

Prototypical foundational set theory.

> €, G, Uv {a’ b},'P(-)

12/18



ZFC

Prototypical foundational set theory.
> 67Q7U7 {a’ b}773(')
» Comprehension: {x|x € AA P(x)}

12/18



ZFC

Prototypical foundational set theory.
> 67Q7U7 {a’ b}773(')
» Comprehension: {x|x € AA P(x)}

» Replacement: {f(x)|x € A}

12/18



ZFC

Prototypical foundational set theory.
> & C U {a b}, P()
» Comprehension: {x|x € AA P(x)}
» Replacement: {f(x)|x € A}

» Choice

12/18



Set Theory

» Functions as represented as their graph: f = {(x, y)|f(x) =y}

13/18



Set Theory

» Functions as represented as their graph: f = {(x, y)|f(x) =y}

» Function spaces: for A and B sets, A — B is a definable set

13/18



Set Theory

» Functions as represented as their graph: f = {(x, y)|f(x) =y}
» Function spaces: for A and B sets, A — B is a definable set
» Encode dependant function spaces too.

» (Medium term goal: embed HOL, inductive data types)

13/18



Why Set Theory (ZFC+TG)

» Built-in functions and inductive definitions: Easier early game
> Set theory foundations are lower-level,

» With an initial effort in development, automation and presentation, can make it
arbitrarily familiar.

» All usual formalism can be simulated.

14/18



LISA’s Implementation

» LISA is developed as a Scala library

» Kernel is in a restricted subset of Scala, — future formal verification.

15/18



LISA’s Implementation

» LISA is developed as a Scala library
» Kernel is in a restricted subset of Scala, — future formal verification.
» Everything else is in Scala 3:

» DSL for proof writing

> Strong type safety via precise types

15/18



Tactics in LISA

> A tactic = A scala function that produce a proof
» Can use all features and library of Scala
» Can mix programming with DSL for proofs

» A Propositional solver is 20 loc

16/18



6 Virtues of Modern Proof Systems

LISA strives to follow these key design features

>

vV V.V Vv V

Efficiency
Trust

Usability
Predictability
Interoperability

Programmability

17/18



Conclusions

» FOL with schematic symbols and set theory
» Equivalence Checker modulo Ortholattices for formulas
» Explicit and self-contained proofs
» Expresive DSL
Find LISA on GitHub: github.com/epfl-lara/lisa

18/18



