
LISA – A Set-Theory Based Proof System

Simon Guilloud Sankalp Gambhir Viktor Kunčak

EPFL
School of Computer and Communication Sciences

Lausanne, Switzerland
{firstname.lastname}@epfl.ch

September 21, 2023



Introduction

LISA is a proof assistant in continuous development.

▶ Based on FOL and set theory

▶ LCF/de Bruijn model with a trusted kernel (but explicit proofs)

▶ Developed in Scala

LISA’s ultimate goal is to serve both as prover for mathematical theorems and program
correctness.

2 / 18



Introduction

LISA is a proof assistant in continuous development.

▶ Based on FOL and set theory

▶ LCF/de Bruijn model with a trusted kernel (but explicit proofs)

▶ Developed in Scala

LISA’s ultimate goal is to serve both as prover for mathematical theorems and program
correctness.

2 / 18



Writing Proofs in LISA: Example

1 val x = variable
2 val P = predicate(1)
3 val f = function(1)
4
5 val fixedPointDoubleApplication = Theorem(
6 ∀(x, P(x) =⇒ P(f(x))) ⊢ P(x) =⇒ P(f(f(x)))
7 ) {
8 assume(∀(x, P(x) =⇒ P(f(x))))
9 val step1 = have(P(x) =⇒ P(f(x))) by InstantiateForall

10 val step2 = have(P(f(x)) =⇒ P(f(f(x)))) by InstantiateForall
11 have(thesis) by Tautology.from(step1, step2)
12 }

3 / 18



LISA’s Logic: FOL

LISA uses First Order Logic as its foundational language.

▶ It has schematic predicate and function symbols (free second-order variables).

▶ This enables expression of axiom and theorem schemas.

′P (0) ∧ ∀x .
(′P (x) =⇒ ′P (x + 1)

)
⊢ ∀x .′P (x)

▶ Those symbols can be instantiated, but cannot be bound and behave otherwise
like uninterpreted symbols.

▶ Does not change provability of non-schematic formulas!

4 / 18



LISA’s Logic: FOL

LISA uses First Order Logic as its foundational language.

▶ It has schematic predicate and function symbols (free second-order variables).

▶ This enables expression of axiom and theorem schemas.

′P (0) ∧ ∀x .
(′P (x) =⇒ ′P (x + 1)

)
⊢ ∀x .′P (x)

▶ Those symbols can be instantiated, but cannot be bound and behave otherwise
like uninterpreted symbols.

▶ Does not change provability of non-schematic formulas!

4 / 18



LISA’s Proof System: LK

LISA uses a variation of Sequent Calculus LK.

▶ Sequents Γ ⊢ ∆, with Γ and ∆ sets of formulas

▶ Introduction rule for each logical symbol on each side + Cut, Weakening

▶ Deduced rules for efficiency:

▶ Instantiation of schematic symbols

▶ Substitution of equal terms/formulas.

Γ ⊢ ϕ[s/′f ],∆
SubstEq

Γ, s = t,⊢ ϕ[t/′f ],∆
Γ ⊢ ϕ[a/′p],∆

SubstIff
Γ, a ↔ b ⊢ ϕ[b/′p],∆

5 / 18



LISA’s Proof System: LK

LISA uses a variation of Sequent Calculus LK.

▶ Sequents Γ ⊢ ∆, with Γ and ∆ sets of formulas

▶ Introduction rule for each logical symbol on each side + Cut, Weakening

▶ Deduced rules for efficiency:

▶ Instantiation of schematic symbols

▶ Substitution of equal terms/formulas.

Γ ⊢ ϕ[s/′f ],∆
SubstEq

Γ, s = t,⊢ ϕ[t/′f ],∆
Γ ⊢ ϕ[a/′p],∆

SubstIff
Γ, a ↔ b ⊢ ϕ[b/′p],∆

5 / 18



LISA’s Proof System: LK

LISA uses a variation of Sequent Calculus LK.

▶ Sequents Γ ⊢ ∆, with Γ and ∆ sets of formulas

▶ Introduction rule for each logical symbol on each side + Cut, Weakening

▶ Deduced rules for efficiency:

▶ Instantiation of schematic symbols

▶ Substitution of equal terms/formulas.

Γ ⊢ ϕ[s/′f ],∆
SubstEq

Γ, s = t,⊢ ϕ[t/′f ],∆
Γ ⊢ ϕ[a/′p],∆

SubstIff
Γ, a ↔ b ⊢ ϕ[b/′p],∆

5 / 18



LISA’s Proof System: LK

LISA uses a variation of Sequent Calculus LK.

▶ Sequents Γ ⊢ ∆, with Γ and ∆ sets of formulas

▶ Introduction rule for each logical symbol on each side + Cut, Weakening

▶ Deduced rules for efficiency:

▶ Instantiation of schematic symbols

▶ Substitution of equal terms/formulas.

Γ ⊢ ϕ[s/′f ],∆
SubstEq

Γ, s = t,⊢ ϕ[t/′f ],∆
Γ ⊢ ϕ[a/′p],∆

SubstIff
Γ, a ↔ b ⊢ ϕ[b/′p],∆

5 / 18



Proofs

▶ Proofs in Sequent Calculus are Directed Acyclic Graphs.

▶ In LISA, serialized into lists of proof steps.

▶ Dependence on axioms, definitions and previous theorems stated explicitly.

0 Hypothesis ϕ ⊢ ϕ
1 Weakening(0) ϕ ⊢ ϕ, ψ
2 RightImplies(1) ⊢ ϕ, (ϕ→ ψ)

3 LeftImplies(2, 0) (ϕ→ ψ) → ϕ ⊢ ϕ
4 RightImplies(3) ⊢ ((ϕ→ ψ) → ϕ) → ϕ

6 / 18



Proofs

▶ Proofs in Sequent Calculus are Directed Acyclic Graphs.

▶ In LISA, serialized into lists of proof steps.

▶ Dependence on axioms, definitions and previous theorems stated explicitly.

0 Hypothesis ϕ ⊢ ϕ
1 Weakening(0) ϕ ⊢ ϕ, ψ
2 RightImplies(1) ⊢ ϕ, (ϕ→ ψ)

3 LeftImplies(2, 0) (ϕ→ ψ) → ϕ ⊢ ϕ
4 RightImplies(3) ⊢ ((ϕ→ ψ) → ϕ) → ϕ

6 / 18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

⊢ b ∧ a a ∧ b ⊢ c

⊢ c
Cut

Who wants a proof rejected because a ∧ b ̸≡ b ∧ a ?

▶ Solution: Heuristic? No

▶ Solution: replace syntactic equality checking by a more powerful equivalence

▶ But still efficiently decidable

▶ Sound approximation of Boolean algebra

7 / 18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

⊢ b ∧ a a ∧ b ⊢ c

⊢ c
Cut

Who wants a proof rejected because a ∧ b ̸≡ b ∧ a ?

▶ Solution: Heuristic? No

▶ Solution: replace syntactic equality checking by a more powerful equivalence

▶ But still efficiently decidable

▶ Sound approximation of Boolean algebra

7 / 18



Built-in Automation: Ortholattices

Dealing with visually obvious syntactic equivalence, such has commutativity, is
frustrating, and makes proofs longer.

⊢ b ∧ a a ∧ b ⊢ c

⊢ c
Cut

Who wants a proof rejected because a ∧ b ̸≡ b ∧ a ?

▶ Solution: Heuristic? No

▶ Solution: replace syntactic equality checking by a more powerful equivalence

▶ But still efficiently decidable

▶ Sound approximation of Boolean algebra

7 / 18



Ortholattices

Commutativity x ∨ y = y ∨ x
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z
Idempotence x ∨ x = x
Constants laws x ∨ 1 = 1
Double negation ¬¬x = x
Excluded middle x ∨ ¬x = 1
De Morgan’s law ¬(x ∨ y) = ¬x ∧ ¬y
Absorption x ∨ (x ∧ y) = x

→ Ortholattices

Boolean Algebra without distributivity

Distributivity: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

8 / 18



Ortholattices

Commutativity x ∨ y = y ∨ x
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z
Idempotence x ∨ x = x
Constants laws x ∨ 1 = 1
Double negation ¬¬x = x
Excluded middle x ∨ ¬x = 1
De Morgan’s law ¬(x ∨ y) = ¬x ∧ ¬y
Absorption x ∨ (x ∧ y) = x

→ Ortholattices

Boolean Algebra without distributivity

Distributivity: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

8 / 18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ϕ and ψ, does ϕ ∼OL ψ hold?

▶ Worst case O(n2) time

▶ Also alpha-equivalence, symmetry and reflexivity of equality...

▶ Proof Checker uses it instead of syntactic equality.

▶ Works particularly well in combination with substitution rules.

Other example:
⊢ [(a ∨ b) ∧ (a ∨ c)] ∨ b

⊢ a ∨ b
Restate

9 / 18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ϕ and ψ, does ϕ ∼OL ψ hold?

▶ Worst case O(n2) time

▶ Also alpha-equivalence, symmetry and reflexivity of equality...

▶ Proof Checker uses it instead of syntactic equality.

▶ Works particularly well in combination with substitution rules.

Other example:
⊢ [(a ∨ b) ∧ (a ∨ c)] ∨ b

⊢ a ∨ b
Restate

9 / 18



Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ϕ and ψ, does ϕ ∼OL ψ hold?

▶ Worst case O(n2) time

▶ Also alpha-equivalence, symmetry and reflexivity of equality...

▶ Proof Checker uses it instead of syntactic equality.

▶ Works particularly well in combination with substitution rules.

Other example:
⊢ [(a ∨ b) ∧ (a ∨ c)] ∨ b

⊢ a ∨ b
Restate

9 / 18



Ortholattices

Ortholattice-based reasoning has potential way beyond proof assistants

▶ Core part of Stainless (program verifier) now:

▶ Simplify formulas before passing them to SMT solver

▶ Normalization used for caching solved formulas

10 / 18



Why Set Theory

Most theorem provers are based on higher order logic or type theory

▶ HOL familiy, Isabelle, Coq, Lean...

But set theory has seen successful use too!

▶ Mizar, Isabelle/ZF, Isabelle/HOL/TG, TLA+

And it is the most widely accepted foundation of mathematics among mathematician
studying foundations.

11 / 18



ZFC

Prototypical foundational set theory.

▶ ∈,⊆,
⋃
, {a, b},P(·)

▶ Comprehension: {x |x ∈ A ∧ P(x)}

▶ Replacement: {f (x)|x ∈ A}

▶ Choice

12 / 18



ZFC

Prototypical foundational set theory.

▶ ∈,⊆,
⋃
, {a, b},P(·)

▶ Comprehension: {x |x ∈ A ∧ P(x)}

▶ Replacement: {f (x)|x ∈ A}

▶ Choice

12 / 18



ZFC

Prototypical foundational set theory.

▶ ∈,⊆,
⋃
, {a, b},P(·)

▶ Comprehension: {x |x ∈ A ∧ P(x)}

▶ Replacement: {f (x)|x ∈ A}

▶ Choice

12 / 18



ZFC

Prototypical foundational set theory.

▶ ∈,⊆,
⋃
, {a, b},P(·)

▶ Comprehension: {x |x ∈ A ∧ P(x)}

▶ Replacement: {f (x)|x ∈ A}

▶ Choice

12 / 18



Set Theory

▶ Functions as represented as their graph: f = {(x , y)|f (x) = y}

▶ Function spaces: for A and B sets, A → B is a definable set

▶ Encode dependant function spaces too.

▶ (Medium term goal: embed HOL, inductive data types)

13 / 18



Set Theory

▶ Functions as represented as their graph: f = {(x , y)|f (x) = y}

▶ Function spaces: for A and B sets, A → B is a definable set

▶ Encode dependant function spaces too.

▶ (Medium term goal: embed HOL, inductive data types)

13 / 18



Set Theory

▶ Functions as represented as their graph: f = {(x , y)|f (x) = y}

▶ Function spaces: for A and B sets, A → B is a definable set

▶ Encode dependant function spaces too.

▶ (Medium term goal: embed HOL, inductive data types)

13 / 18



Why Set Theory (ZFC+TG)

▶ Built-in functions and inductive definitions: Easier early game

▶ Set theory foundations are lower-level,

▶ With an initial effort in development, automation and presentation, can make it
arbitrarily familiar.

▶ All usual formalism can be simulated.

14 / 18



LISA’s Implementation

▶ LISA is developed as a Scala library

▶ Kernel is in a restricted subset of Scala, → future formal verification.

▶ Everything else is in Scala 3:

▶ DSL for proof writing

▶ Strong type safety via precise types

15 / 18



LISA’s Implementation

▶ LISA is developed as a Scala library

▶ Kernel is in a restricted subset of Scala, → future formal verification.

▶ Everything else is in Scala 3:

▶ DSL for proof writing

▶ Strong type safety via precise types

15 / 18



Tactics in LISA

▶ A tactic = A scala function that produce a proof

▶ Can use all features and library of Scala

▶ Can mix programming with DSL for proofs

▶ A Propositional solver is 20 loc

16 / 18



6 Virtues of Modern Proof Systems

LISA strives to follow these key design features

▶ Efficiency

▶ Trust

▶ Usability

▶ Predictability

▶ Interoperability

▶ Programmability

17 / 18



Conclusions

▶ FOL with schematic symbols and set theory

▶ Equivalence Checker modulo Ortholattices for formulas

▶ Explicit and self-contained proofs

▶ Expresive DSL

Find LISA on GitHub: github.com/epfl-lara/lisa

18 / 18


