
HOL Light from the foundations (part 2/3)

John Harrison

Amazon Web Services

21st Sep 2023 (14:00–14:45)

HOL types

In general, a HOL type is either

▶ A polymorphic type variable
‘:A‘;;

val it : hol_type = ‘:A‘

▶ A compound type built up from basic types using a type
operator, like the function space ->, lists or pairs
‘:num->bool list‘;;

val it : hol_type = ‘:num->(bool)list‘

▶ Note that certain basic types like bool are considered as
nullary type operators.

The type system is very closely analogous to that of OCaml itself,
and HOL’s parser even uses similar algorithms to assign most
general polymorphic types.

HOL types

In general, a HOL type is either

▶ A polymorphic type variable
‘:A‘;;

val it : hol_type = ‘:A‘

▶ A compound type built up from basic types using a type
operator, like the function space ->, lists or pairs
‘:num->bool list‘;;

val it : hol_type = ‘:num->(bool)list‘

▶ Note that certain basic types like bool are considered as
nullary type operators.

The type system is very closely analogous to that of OCaml itself,
and HOL’s parser even uses similar algorithms to assign most
general polymorphic types.

HOL types

In general, a HOL type is either

▶ A polymorphic type variable
‘:A‘;;

val it : hol_type = ‘:A‘

▶ A compound type built up from basic types using a type
operator, like the function space ->, lists or pairs
‘:num->bool list‘;;

val it : hol_type = ‘:num->(bool)list‘

▶ Note that certain basic types like bool are considered as
nullary type operators.

The type system is very closely analogous to that of OCaml itself,
and HOL’s parser even uses similar algorithms to assign most
general polymorphic types.

HOL types

In general, a HOL type is either

▶ A polymorphic type variable
‘:A‘;;

val it : hol_type = ‘:A‘

▶ A compound type built up from basic types using a type
operator, like the function space ->, lists or pairs
‘:num->bool list‘;;

val it : hol_type = ‘:num->(bool)list‘

▶ Note that certain basic types like bool are considered as
nullary type operators.

The type system is very closely analogous to that of OCaml itself,
and HOL’s parser even uses similar algorithms to assign most
general polymorphic types.

HOL terms

There are only four basic kinds of HOL term:

▶ Variables, with a specific type
‘p:bool‘;;

val it : term = ‘p‘

▶ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading
‘1‘;;

val it : term = ‘1‘

▶ Applications, written with juxtaposition (this is the successor
function applied to 0):
‘SUC 0‘;;

val it : term = ‘SUC 0‘

▶ Abstractions or lambdas, written with a backslash
‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘

HOL terms

There are only four basic kinds of HOL term:

▶ Variables, with a specific type
‘p:bool‘;;

val it : term = ‘p‘

▶ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading
‘1‘;;

val it : term = ‘1‘

▶ Applications, written with juxtaposition (this is the successor
function applied to 0):
‘SUC 0‘;;

val it : term = ‘SUC 0‘

▶ Abstractions or lambdas, written with a backslash
‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘

HOL terms

There are only four basic kinds of HOL term:

▶ Variables, with a specific type
‘p:bool‘;;

val it : term = ‘p‘

▶ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading
‘1‘;;

val it : term = ‘1‘

▶ Applications, written with juxtaposition (this is the successor
function applied to 0):
‘SUC 0‘;;

val it : term = ‘SUC 0‘

▶ Abstractions or lambdas, written with a backslash
‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘

HOL terms

There are only four basic kinds of HOL term:

▶ Variables, with a specific type
‘p:bool‘;;

val it : term = ‘p‘

▶ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading
‘1‘;;

val it : term = ‘1‘

▶ Applications, written with juxtaposition (this is the successor
function applied to 0):
‘SUC 0‘;;

val it : term = ‘SUC 0‘

▶ Abstractions or lambdas, written with a backslash
‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘

HOL terms

There are only four basic kinds of HOL term:

▶ Variables, with a specific type
‘p:bool‘;;

val it : term = ‘p‘

▶ Constants, again with a specific type that HOL Light will
usually infer, though it supports some degree of constant
overloading
‘1‘;;

val it : term = ‘1‘

▶ Applications, written with juxtaposition (this is the successor
function applied to 0):
‘SUC 0‘;;

val it : term = ‘SUC 0‘

▶ Abstractions or lambdas, written with a backslash
‘\x. x + 1‘;;

val it : term = ‘\x. x + 1‘

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v
Γ ∪∆ ⊢ s(u) = t(v)

MK COMB

Γ ⊢ s = t
Γ ⊢ (λx . s) = (λx . t)

ABS

⊢ (λx . t)x = t
BETA

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

HOL’s logical connectives

The usual logical connectives are given ASCII renderings:

⊥ F Falsity

⊤ T Truth

¬ ~ Not

∧ /\ And

∨ \/ Or

⇒ ==> Implies (‘if . . . then . . . ’)

⇔ <=> Iff (‘. . . if and only if . . . ’)

∀ ! For all

∃ ? There exists

∃! ?! There exists a unique

The definitions of the logical connectives
HOL Light is so foundational that even all the basic logical
connectives are defined in terms of equality:

⊤ = (λp. p) = (λp. p)

∧ = λp. λq. (λf . f p q) = (λf . f ⊤ ⊤)

⇒ = λp. λq. p ∧ q = p

∀ = λP. P = λx .⊤
∃ = λP. ∀q. (∀x . P(x) ⇒ q) ⇒ q

∨ = λp. λq. ∀r . (p ⇒ r) ⇒ (q ⇒ r) ⇒ r

⊥ = ∀p. p
¬ = λp. p ⇒ ⊥
∃! = λP. ∃P ∧ ∀x . ∀y . P x ∧ P y ⇒ (x = y)

The usual properties of the connectives are derived from the
primitive rules.

Basic syntax functions

HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

▶ type_of to get the (HOL!) type of a term
type_of ‘1‘;;

val it : hol_type = ‘:num‘

▶ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds
dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

▶ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs
mk_var("p",‘:bool‘);;

val it : term = ‘p‘

▶ frees to get the free variables in a term
frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]

Basic syntax functions

HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

▶ type_of to get the (HOL!) type of a term
type_of ‘1‘;;

val it : hol_type = ‘:num‘

▶ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds
dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

▶ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs
mk_var("p",‘:bool‘);;

val it : term = ‘p‘

▶ frees to get the free variables in a term
frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]

Basic syntax functions

HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

▶ type_of to get the (HOL!) type of a term
type_of ‘1‘;;

val it : hol_type = ‘:num‘

▶ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds
dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

▶ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs
mk_var("p",‘:bool‘);;

val it : term = ‘p‘

▶ frees to get the free variables in a term
frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]

Basic syntax functions

HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

▶ type_of to get the (HOL!) type of a term
type_of ‘1‘;;

val it : hol_type = ‘:num‘

▶ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds
dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

▶ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs
mk_var("p",‘:bool‘);;

val it : term = ‘p‘

▶ frees to get the free variables in a term
frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]

Basic syntax functions

HOL Light provides many convenient function for manipulating the
basic logical entities, e.g.

▶ type_of to get the (HOL!) type of a term
type_of ‘1‘;;

val it : hol_type = ‘:num‘

▶ Destructor functions dest_var, dest_const, dest_comb and
dest_abs to break down terms of various kinds
dest_comb ‘SUC 0‘;;

val it : term * term = (‘SUC‘, ‘0‘)

▶ Corresponding constructors mk_var, mk_const, mk_comb and
mk_abs
mk_var("p",‘:bool‘);;

val it : term = ‘p‘

▶ frees to get the free variables in a term
frees ‘x + y + 1‘;;

val it : term list = [‘x‘; ‘y‘]

Representing more complex terms

All the expressions in logic and mathematics are ultimately
expressed using just those four basic terms, and one can explore
how it is done using the destructor functions

▶ Binary logical connectives are just curried functions of the
appropriate type:
dest_comb ‘p /\ q‘;;

val it : term * term = (‘(/\) p‘, ‘q‘)

▶ Quantifiers are higher-order functions applied to an
abstraction
dest_comb ‘!x. x < x + 1‘;;

val it : term * term = (‘(!)‘, ‘\x. x < x + 1‘)

Getting help

Note that one can also get help on any predefined HOL Light
functions using the help function, e.g.

help "mk_abs";;

There is also a full Reference manual with the same information.

Getting help

Note that one can also get help on any predefined HOL Light
functions using the help function, e.g.

help "mk_abs";;

There is also a full Reference manual with the same information.

Basic and derived definitional
principles

Basic principle of constant definition

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool.

Later we add the Hilbert ε : (α → bool) → α yielding the Axiom
of Choice.
All other constants are introduced using new_basic_definition,
the rule of constant definition: given a term t (closed, and with
some restrictions on type variables) and an unused constant name
c , we can define c and get the new theorem

⊢ c = t

This is an object-level definitional principle, in that c is a constant,
not some meta-level abbreviation. It is easy to see that this is
conservative, and in particular consistency-preserving.

Basic principle of constant definition

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool.
Later we add the Hilbert ε : (α → bool) → α yielding the Axiom
of Choice.

All other constants are introduced using new_basic_definition,
the rule of constant definition: given a term t (closed, and with
some restrictions on type variables) and an unused constant name
c , we can define c and get the new theorem

⊢ c = t

This is an object-level definitional principle, in that c is a constant,
not some meta-level abbreviation. It is easy to see that this is
conservative, and in particular consistency-preserving.

Basic principle of constant definition

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool.
Later we add the Hilbert ε : (α → bool) → α yielding the Axiom
of Choice.
All other constants are introduced using new_basic_definition,
the rule of constant definition: given a term t (closed, and with
some restrictions on type variables) and an unused constant name
c , we can define c and get the new theorem

⊢ c = t

This is an object-level definitional principle, in that c is a constant,
not some meta-level abbreviation. It is easy to see that this is
conservative, and in particular consistency-preserving.

Basic principle of constant definition

The only primitive constant for the logic itself is equality = with
polymorphic type α → α → bool.
Later we add the Hilbert ε : (α → bool) → α yielding the Axiom
of Choice.
All other constants are introduced using new_basic_definition,
the rule of constant definition: given a term t (closed, and with
some restrictions on type variables) and an unused constant name
c , we can define c and get the new theorem

⊢ c = t

This is an object-level definitional principle, in that c is a constant,
not some meta-level abbreviation. It is easy to see that this is
conservative, and in particular consistency-preserving.

Basic principle of type definition

The only primitive type constructors for the logic itself are bool
(booleans) and fun (function space).

Later we add an infinite type ind (individuals) to assert the axiom
of infinity.
All other types are introduced by new_basic_type_definition,
the rule of type definition, to be in bijection with any nonempty
subset of an existing type.

'

&

$

%
�
�

�
�

�
�

�
�

new
type
δ

existing
type

γ

�
bijections

- P

Again, this is conservative and consistency-preserving.

Basic principle of type definition

The only primitive type constructors for the logic itself are bool
(booleans) and fun (function space).
Later we add an infinite type ind (individuals) to assert the axiom
of infinity.

All other types are introduced by new_basic_type_definition,
the rule of type definition, to be in bijection with any nonempty
subset of an existing type.

'

&

$

%
�
�

�
�

�
�

�
�

new
type
δ

existing
type

γ

�
bijections

- P

Again, this is conservative and consistency-preserving.

Basic principle of type definition

The only primitive type constructors for the logic itself are bool
(booleans) and fun (function space).
Later we add an infinite type ind (individuals) to assert the axiom
of infinity.
All other types are introduced by new_basic_type_definition,
the rule of type definition, to be in bijection with any nonempty
subset of an existing type.

'

&

$

%
�
�

�
�

�
�

�
�

new
type
δ

existing
type

γ

�
bijections

- P

Again, this is conservative and consistency-preserving.

HOL as a definitional framework

While Edinburgh LCF required theorems to be proved via the
primitive inference rules, it was usual to assert axioms to give the
definitions required, and it was quite easy to assert inconsistent
axioms.

One of the innovations of Gordon’s original HOL work was to
extend this ‘correct-by-construction’ approach to the definitions of
new concepts, which works very nicely in a general framework like
HOL, so:

▶ All proofs are done by primitive inferences

▶ All new types are defined not postulated.

This is the standard approach in mathematics, even if most of the
time people don’t bother about it (e.g. the construction of the real
numbers as Dedekind cuts or whatever).
Just using axioms was compared by Russell to theft in place of
honest toil.

HOL as a definitional framework

While Edinburgh LCF required theorems to be proved via the
primitive inference rules, it was usual to assert axioms to give the
definitions required, and it was quite easy to assert inconsistent
axioms.
One of the innovations of Gordon’s original HOL work was to
extend this ‘correct-by-construction’ approach to the definitions of
new concepts, which works very nicely in a general framework like
HOL, so:

▶ All proofs are done by primitive inferences

▶ All new types are defined not postulated.

This is the standard approach in mathematics, even if most of the
time people don’t bother about it (e.g. the construction of the real
numbers as Dedekind cuts or whatever).
Just using axioms was compared by Russell to theft in place of
honest toil.

HOL as a definitional framework

While Edinburgh LCF required theorems to be proved via the
primitive inference rules, it was usual to assert axioms to give the
definitions required, and it was quite easy to assert inconsistent
axioms.
One of the innovations of Gordon’s original HOL work was to
extend this ‘correct-by-construction’ approach to the definitions of
new concepts, which works very nicely in a general framework like
HOL, so:

▶ All proofs are done by primitive inferences

▶ All new types are defined not postulated.

This is the standard approach in mathematics, even if most of the
time people don’t bother about it (e.g. the construction of the real
numbers as Dedekind cuts or whatever).

Just using axioms was compared by Russell to theft in place of
honest toil.

HOL as a definitional framework

While Edinburgh LCF required theorems to be proved via the
primitive inference rules, it was usual to assert axioms to give the
definitions required, and it was quite easy to assert inconsistent
axioms.
One of the innovations of Gordon’s original HOL work was to
extend this ‘correct-by-construction’ approach to the definitions of
new concepts, which works very nicely in a general framework like
HOL, so:

▶ All proofs are done by primitive inferences

▶ All new types are defined not postulated.

This is the standard approach in mathematics, even if most of the
time people don’t bother about it (e.g. the construction of the real
numbers as Dedekind cuts or whatever).
Just using axioms was compared by Russell to theft in place of
honest toil.

Convenient higher-level definitional principles

However, part of the motivation for just axiomatizing definitions is
that it’s often very convenient to use much higher-level principles,
e.g.

▶ Inductive definitions of sets and predicates

▶ Definition of inductive types (trees, lists etc.)

▶ Definition of primitive recursive functions over such types

▶ Definition of general recursive functions using wellfounded
orderings

Many other theorem provers build such principles in as primitive,
and very often get them wrong . . .
HOL Light supports all these and more using safely derived
definitional principles.

Convenient higher-level definitional principles

However, part of the motivation for just axiomatizing definitions is
that it’s often very convenient to use much higher-level principles,
e.g.

▶ Inductive definitions of sets and predicates

▶ Definition of inductive types (trees, lists etc.)

▶ Definition of primitive recursive functions over such types

▶ Definition of general recursive functions using wellfounded
orderings

Many other theorem provers build such principles in as primitive,
and very often get them wrong . . .
HOL Light supports all these and more using safely derived
definitional principles.

Convenient higher-level definitional principles

However, part of the motivation for just axiomatizing definitions is
that it’s often very convenient to use much higher-level principles,
e.g.

▶ Inductive definitions of sets and predicates

▶ Definition of inductive types (trees, lists etc.)

▶ Definition of primitive recursive functions over such types

▶ Definition of general recursive functions using wellfounded
orderings

Many other theorem provers build such principles in as primitive,
and very often get them wrong . . .

HOL Light supports all these and more using safely derived
definitional principles.

Convenient higher-level definitional principles

However, part of the motivation for just axiomatizing definitions is
that it’s often very convenient to use much higher-level principles,
e.g.

▶ Inductive definitions of sets and predicates

▶ Definition of inductive types (trees, lists etc.)

▶ Definition of primitive recursive functions over such types

▶ Definition of general recursive functions using wellfounded
orderings

Many other theorem provers build such principles in as primitive,
and very often get them wrong . . .
HOL Light supports all these and more using safely derived
definitional principles.

Inductively defined relations

The new_inductive_definition function automates inductive
definitions, using a Knaster-Tarski type derivation under the
surface. It can cope with infinitary definitions, parameters, and
user-defined monotone operators.

new_inductive_definition ‘E(0) /\ (!n. E(n) ==> E(n + 2))‘;;

val it : thm * thm * thm =

(|- E 0 /\ (!n. E n ==> E (n + 2)),

|- !E’. E’ 0 /\ (!n. E’ n ==> E’ (n + 2)) ==> (!a. E a ==> E’ a),

|- !a. E a <=> a = 0 \/ (?n. a = n + 2 /\ E n))

The function returns a triple of theorems:

▶ A ‘rule’ theorem (the inductively defined predicate is closed
under the rules)

▶ An ‘induction’ or minimality theorem (the inductively defined
predicate is the least such)

▶ A ‘cases’ theorem that each element arises by virtue of one of
the rules.

Inductively defined relations

The new_inductive_definition function automates inductive
definitions, using a Knaster-Tarski type derivation under the
surface. It can cope with infinitary definitions, parameters, and
user-defined monotone operators.

new_inductive_definition ‘E(0) /\ (!n. E(n) ==> E(n + 2))‘;;

val it : thm * thm * thm =

(|- E 0 /\ (!n. E n ==> E (n + 2)),

|- !E’. E’ 0 /\ (!n. E’ n ==> E’ (n + 2)) ==> (!a. E a ==> E’ a),

|- !a. E a <=> a = 0 \/ (?n. a = n + 2 /\ E n))

The function returns a triple of theorems:

▶ A ‘rule’ theorem (the inductively defined predicate is closed
under the rules)

▶ An ‘induction’ or minimality theorem (the inductively defined
predicate is the least such)

▶ A ‘cases’ theorem that each element arises by virtue of one of
the rules.

Inductively defined relations

The new_inductive_definition function automates inductive
definitions, using a Knaster-Tarski type derivation under the
surface. It can cope with infinitary definitions, parameters, and
user-defined monotone operators.

new_inductive_definition ‘E(0) /\ (!n. E(n) ==> E(n + 2))‘;;

val it : thm * thm * thm =

(|- E 0 /\ (!n. E n ==> E (n + 2)),

|- !E’. E’ 0 /\ (!n. E’ n ==> E’ (n + 2)) ==> (!a. E a ==> E’ a),

|- !a. E a <=> a = 0 \/ (?n. a = n + 2 /\ E n))

The function returns a triple of theorems:

▶ A ‘rule’ theorem (the inductively defined predicate is closed
under the rules)

▶ An ‘induction’ or minimality theorem (the inductively defined
predicate is the least such)

▶ A ‘cases’ theorem that each element arises by virtue of one of
the rules.

Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.

HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.
HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.
HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.
HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

Inductive/recursive datatypes
These are analogous to the concrete datatypes of OCaml and
similar languages. Examples include natural numbers, lists and
trees.
HOL Light’s define_type rule can handle nested constructors and
mutual recursion. For example, a simple type for binary trees with
natural numbers at the leaves:

let btree_INDUCT,btree_RECURSION = define_type

"btree = Leaf num | Branch btree btree";;

The rule returns a pair of theorem, one justifying ‘structural
induction’ over the type:

val btree_INDUCT : thm =

|- !P. (!a. P (Leaf a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (Branch a0 a1))

==> (!x. P x)

and the other justifying definition by primitive recursion

val btree_RECURSION : thm =

|- !f0 f1.

?fn. (!a. fn (Leaf a) = f0 a) /\

(!a0 a1. fn (Branch a0 a1) = f1 a0 a1 (fn a0) (fn a1))

Recursive functions

HOL Light can automatically use the recursion theorems produced
by define_type to justify primitive recursive theorems.

Can also handle general recursive definitions, and in simple cases
can find an appropriate wellfounded ordering automatically:

let fib = define

‘fib 0 = 1 /\

fib 1 = 1 /\

fib (n + 2) = fib(n) + fib(n + 1)‘;;

val fib : thm =

|- fib 0 = 1 /\ fib 1 = 1 /\ fib (n + 2) = fib n + fib (n + 1)

Some tail-recursive cases can be justified even without an ordering:

define ‘collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)

else collatz(3 * n + 1)‘;;

Recursive functions

HOL Light can automatically use the recursion theorems produced
by define_type to justify primitive recursive theorems.
Can also handle general recursive definitions, and in simple cases
can find an appropriate wellfounded ordering automatically:

let fib = define

‘fib 0 = 1 /\

fib 1 = 1 /\

fib (n + 2) = fib(n) + fib(n + 1)‘;;

val fib : thm =

|- fib 0 = 1 /\ fib 1 = 1 /\ fib (n + 2) = fib n + fib (n + 1)

Some tail-recursive cases can be justified even without an ordering:

define ‘collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)

else collatz(3 * n + 1)‘;;

Recursive functions

HOL Light can automatically use the recursion theorems produced
by define_type to justify primitive recursive theorems.
Can also handle general recursive definitions, and in simple cases
can find an appropriate wellfounded ordering automatically:

let fib = define

‘fib 0 = 1 /\

fib 1 = 1 /\

fib (n + 2) = fib(n) + fib(n + 1)‘;;

val fib : thm =

|- fib 0 = 1 /\ fib 1 = 1 /\ fib (n + 2) = fib n + fib (n + 1)

Some tail-recursive cases can be justified even without an ordering:

define ‘collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)

else collatz(3 * n + 1)‘;;

Recursive functions

HOL Light can automatically use the recursion theorems produced
by define_type to justify primitive recursive theorems.
Can also handle general recursive definitions, and in simple cases
can find an appropriate wellfounded ordering automatically:

let fib = define

‘fib 0 = 1 /\

fib 1 = 1 /\

fib (n + 2) = fib(n) + fib(n + 1)‘;;

val fib : thm =

|- fib 0 = 1 /\ fib 1 = 1 /\ fib (n + 2) = fib n + fib (n + 1)

Some tail-recursive cases can be justified even without an ordering:

define ‘collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)

else collatz(3 * n + 1)‘;;

