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Basic mathematical theories in
HOL Light



Cartesian products and pairs

We define a Cartesian product constructor written as infix ‘#’ (not
’*’ as in OCaml).
This takes two types α and β and gives us the Cartesian product
α× β.

As with OCaml, the pairing function is an infix comma, and
parentheses are not needed except to establish precedence.

# type_of ‘1,2‘;;

val it : hol_type = ‘:num#num‘

The projections are FST and SND.
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Natural numbers

The axiom of infinity (INFINITY_AX) asserts that there is a
function from the type of ‘individuals’ to itself that is injective but
not surjective (Dedekind’s definition of infinity)

This means the type of individuals is big enough to hold the
natural numbers, and they are carved out as an inductively defined
predicate to use in a type definition.

This gives the type of natural numbers :num, a function SUC (the
image under the bijection of the function postulated by
INFINITY_AX) and a constant zero (some value not in the range
of SUC).
All the usual arithmetical operations are defined and the usual
properties proved, making heavy use of definition by recursion and
proof by recursion, e.g. the primitive recursive definition of
addition:

val it : thm = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))
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Natural number constants

The ‘constants’ 0, 1, 2, 3, 4, . . . are not in fact constants, but
prettyprinted forms of composite terms. We use two basic
constants for the functions n 7→ 2n and n 7→ 2n + 1:

BIT0 = |- BIT0 n = n + n

BIT1 = |- BIT1 n = SUC(n + n)

These are used to encode numbers in a binary notation, e,g. 6 as

BIT0 (BIT1 (BIT1 _0)

An outer identity constant NUMERAL is applied, which among other
things avoids confusing cases where one number is a subterm of
another one. So for example:

# dest_comb ‘14‘;;

val it : term * term = (‘NUMERAL‘, ‘BIT0 (BIT1 (BIT1 (BIT1 _0)))‘)
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Natural number arithmetic
Most arithmetic operations in this representation can be evaluated
by applying theorems as rewrite rules

ARITH_ADD =

|- (!m n. NUMERAL m + NUMERAL n = NUMERAL (m + n)) /\

_0 + _0 = _0 /\

(!n. _0 + BIT0 n = BIT0 n) /\

(!n. _0 + BIT1 n = BIT1 n) /\

(!n. BIT0 n + _0 = BIT0 n) /\

(!n. BIT1 n + _0 = BIT1 n) /\

(!m n. BIT0 m + BIT0 n = BIT0 (m + n)) /\

(!m n. BIT0 m + BIT1 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT0 n = BIT1 (m + n)) /\

(!m n. BIT1 m + BIT1 n = BIT0 (SUC (m + n)))

ARITH_SUC =

|- (!n. SUC (NUMERAL n) = NUMERAL (SUC n)) /\

SUC _0 = BIT1 _0 /\

(!n. SUC (BIT0 n) = BIT1 n) /\

(!n. SUC (BIT1 n) = BIT0 (SUC n))

Optimized derived rules can do most arithmetic fairly efficiently,
way slower than machine arithmetic or bignums, but fast enough
for most purposes.



Real numbers (1)

We say a function x : N → N (i.e. a sequence of natural numbers)
is nearly additive if there is a bound B with

∀m, n. |xm+n − (xm + xn)| ≤ B

This turns out to be equivalent to being ‘nearly multiplicative’, i.e.
for some B:

∀m, n. |mxn − nxm| ≤ B(m + n)

Intuitively, it may help to think of xn/n converging to a real
number. We can turn this round and use it as a definition of
(nonnegative) real numbers.
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Real numbers (2)

Nonnegative reals are defined as equivalence classes of nearly
multiplicative sequences. The operations are very easy, for two
sequences xn and yn:

▶ Addition is just pointwise addition n 7→ xn + yn
▶ Multiplication is actually function composition n 7→ xyn .

Taking appropriate equivalence classes of pairs (thinking of (x , y)
as x − y) gives the positive and negative reals.

We prove the ‘complete ordered field’ properties and thereafter
never look back inside the actual definition, so the precise
definition used doesn’t really matter.
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Sets

In some sense sets in HOL are trivial: we don’t have a special type
operator for sets over a type α, but just use predicates, i.e.
functions of type α → bool.

But for familiarity of notation we define a membership relation IN

|- !P x. x IN P <=> P x

as well as a derived syntax (printed in the familiar way by the
prettyprinter) for set comprehensions {f (x) | P(x)} for ‘the set of
f (x) such that P(x)’, and the usual set operations, e.g.

|- s UNION t = {x | x IN s \/ x IN t}
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More advanced automation



More automated derived rules

HOL Light does have quite a few more automated derived rules
that can prove non-trival properties in the right domains
completely automatically (and with the usual proof generation).

▶ Tautology checker

▶ First-order automation (MESON, METIS)

▶ Basic set theory

▶ Algebra via Gröbner bases

▶ Linear arithmetic

▶ . . .

To become productive at formal proof, it’s worth appreciating what
can and cannot be done by these automated methods.
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Tautology checker

You can prove basic propositional tautologies with TAUT

TAUT ‘p /\ q <=> p <=> q <=> p \/ q‘;;

This uses a fairly naive algorithm, but Hasan Amjad has developed
far more efficient tautology checkers (in the Minisat directory)
based on the use of external SAT solvers Minisat or zchaff:

▶ Convert the problem to standard format and call the SAT
solver

▶ Use the proof trace returned to generate a HOL Light proof.

The HOL Light proof generation time is not usually much more
than the existing search time for the SAT solver.
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First-order automation

HOL Light has a simple first-order prover MESON based on model
elimination, which can dispose of much purely first-order
reasoning, e.g.

MESON[]

‘(!x y z. P x y /\ P y z ==> P x z) /\

(!x y z. Q x y /\ Q y z ==> Q x z) /\

(!x y. P x y ==> P y x) /\

(!x y. P x y \/ Q x y)

==> (!x y. P x y) \/ (!x y. Q x y)‘;;

There is also an analogous METIS due to Joe Hurd, as well as an
experimental “Hammer” (Cezary Kaliszyk and Josef Urban) using
external provers together with machine learning:

http://cl-informatik.uibk.ac.at/software/hh/

http://cl-informatik.uibk.ac.at/software/hh/
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Basic set automation

HOL Light has a basic automated prover for facts of set theory:
SET_RULE.

The code is basically trivial: rewrite away all the set operations
and use first-order automation. Nevertheless it is extremely useful:

SET_RULE ‘t SUBSET s ==> t = s INTER t‘;;

SET_RULE ‘~(s SUBSET {b}) <=> ?a. ~(a = b) /\ a IN s‘;;

SET_RULE ‘(!x y. f x = f y ==> x = y) ==> (!x s. f x IN IMAGE f s <=> x IN s)‘;;

This is used frequently to generate such handy obvious facts that
would otherwise be distracting in the middle of a real proof.
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Algebra via Gröbner bases

HOL Light includes a Gröbner basis procedure which is at the core
of several convenient algebraic rules like INT_RING, REAL_FIELD,
COMPLEX_FIELD:

# REAL_FIELD ‘!x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))‘;;

val it : thm = |- !x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))

Here is “Vieta’s substitution” for cubic equations, completely
automatically:

REAL_RING

‘p = (&3 * a1 - a2 pow 2) / &3 /\

q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\

x = z + a2 / &3 /\

x * w = w pow 2 - p / &3

==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>

if p = &0 then x pow 3 = q

else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)‘;;
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Linear arithmetic
Basic facts of linear arithmetic are painful to prove by hand, but
HOL Light has quite effective decision procedures for small cases.

There is also a highly efficient implementation of linear
programming due to Alexey Solovyev that is used extensively in
Flyspeck.

# REAL_ARITH ‘!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y‘;;

val it : thm = |- !x y. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y

# REAL_ARITH ‘!x y:real. (abs(x) - abs(y)) <= abs(x - y)‘;;

val it : thm = |- !x y. abs x - abs y <= abs (x - y)

These can also handle non-linear terms and division by constants in
easy cases, e.g.

REAL_ARITH ‘(&1 + x) * (&1 - x) * (&1 + x pow 2) < &1 ==> &0 < x pow 4‘;;

ARITH_RULE ‘x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10‘;;

However in general these are limited to linear problems and only
(implicitly or explicitly) universal quantified formulas.
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There is also a highly efficient implementation of linear
programming due to Alexey Solovyev that is used extensively in
Flyspeck.

# REAL_ARITH ‘!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y‘;;

val it : thm = |- !x y. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y

# REAL_ARITH ‘!x y:real. (abs(x) - abs(y)) <= abs(x - y)‘;;

val it : thm = |- !x y. abs x - abs y <= abs (x - y)

These can also handle non-linear terms and division by constants in
easy cases, e.g.
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Quantifier elimination for linear arithmetic

Examples/cooper.ml has Cooper’s algorithm for integer
quantifier elimination as a derived rule, which can handle arbitrary
quantifier structure:

# COOPER_RULE ‘!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b‘;;

val it : thm = |- !n. n >= 8 ==> (?a b. n = 3 * a + 5 * b)

Here’s an example where we can prove ‘covering congruence’
results more or less automatically:

let COVERING_CONGRUENCES_1 = prove

(‘!n. (n == 0) (mod 2) \/

(n == 0) (mod 3) \/

(n == 1) (mod 4) \/

(n == 3) (mod 8) \/

(n == 7) (mod 12) \/

(n == 23) (mod 24)‘,

GEN_TAC THEN REWRITE_TAC[num_congruent; int_congruent] THEN

SPEC_TAC(‘&n:int‘,‘x:int‘) THEN CONV_TAC COOPER_CONV);;
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Quantifier elimination for real arithmetic

Rqe contains a derived quantifier elimination procedure for real
arithmetic written by Sean McLaughlin. It is quite powerful in
principle:

REAL_QELIM_CONV

‘!a b c. (?x. a * x pow 2 + b * x + c = &0) <=>

a = &0 /\ (~(b = &0) \/ c = &0) \/

~(a = &0) /\ b pow 2 >= &4 * a * c‘;;

This seems to be one of the cases where insisting on full LCF-style
proof generation really slows things down, so this can be quite
time-consuming on large problems.
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Nonlinear arithmetic using sum-of-squares

For purely universal nonlinear problems there is a procedure based
on sums of squares (building on the work of Pablo Parrilo) which is
often much more efficient.

It relies on an external semidefinite programming engine like
CSDP, but generates an algebraic certificate that can be verified
very efficiently in HOL Light.

# SOS_RULE ‘1 <= x /\ 1 <= y ==> 1 <= x * y‘;;

val it : thm = |- 1 <= x /\ 1 <= y ==> 1 <= x * y

Under the surface the algebraic certificate involves rearranging
expressions into sums of squares.
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More SOS examples

There is also a conversion that will just explicitly rewrite
expressions as sums of squares:

# SOS_CONV

‘&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4‘;;

val it : thm =

|- &2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4 =

&1 / &2 * (&2 * x pow 2 + x * y + -- &1 * y pow 2) pow 2 +

&1 / &2 * (x * y + y pow 2) pow 2 +

&4 * y pow 2 pow 2

SOS is quite good at the kinds of inequalities you find in math
olympiad problems:

REAL_SOS

‘!a b c:real.

a >= &0 /\ b >= &0 /\ c >= &0

==> &3 / &2 * (b + c) * (a + c) * (a + b) <=

a * (a + c) * (a + b) +

b * (b + c) * (a + b) +

c * (b + c) * (a + c)‘;;
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Nonlinear inequality reasoning with formal interval
arithmetic

As part of the Flyspeck project Alexey Solovyev developed a highly
efficient formal implementation of interval arithmetic
(Formal_ineqs),

verify_ineq default_params 5

‘-- &10 <= x0 /\ x0 <= &40 /\ &40 <= x1 /\ x1 <= &100 /\

-- &70 <= x2 /\ x2 <= -- &40 /\ -- &70 <= x3 /\ x3 <= &40 /\

&10 <= x4 /\ x4 <= &20 /\ -- &10 <= x5 /\ x5 <= &20 /\

-- &30 <= x6 /\ x6 <= &110 /\ -- &110 <= x7 /\ x7 <= -- &30

==> -- &1 * x0 * x5 pow 3 + &3 * x0 * x5 * x6 pow 2 - x2 * x6 pow 3 +

&3 * x2 * x6 * x5 pow 2 - x1 * x4 pow 3 + &3 * x1 * x4 * x7 pow 2 -

x3 * x7 pow 3 + &3 * x3 * x7 * x4 pow 2 - &9563453 / &10000000

< &232480000‘;;

Besides being amazingly efficient, it can also handle several
transcendental functions, e.g.

verify_ineq default_params 5

‘&0 <= x /\ x <= &1 ==> atn x - x / (&1 + #0.28 * x * x) < #0.005‘;;
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Divisibility properties

HOL Light has a convenient rule for proving a class of basic
disibility properties over natural numbers

NUMBER_RULE

‘~(gcd(a,b) = 0) /\ a = a’ * gcd(a,b) /\ b = b’ * gcd(a,b)

==> coprime(a’,b’)‘;;

or integers

INTEGER_RULE ‘!x y. coprime(x * y,x pow 2 + y pow 2) <=> coprime(x,y)‘;;

INTEGER_RULE ‘coprime(a,b) ==> ?x. (x == u) (mod a) /\ (x == v) (mod b)‘;;

Internally this is using Gröbner bases once again (see Harrison
“Automating Elementary Number-Theoretic Proofs using Gröbner
bases”).
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bases”).



Normed space procedure
We also have convenient ‘linear decision procedure’ for both
normed spaces and metric spaces (latter from Marco Maggesi),
analogous to the typical ones for integers, reals etc.

NORM_ARITH

‘abs(norm(w - z) - r) = d /\ norm(u - w) < d / &2 /\ norm(x - z) = r

==> d / &2 <= norm(x - u)‘;;

d/2

z

w

x

r

d

u

See Solovay, Arthan and Harrison Some new results on decidability
for elementary algebra and geometry



Tactic proofs



Goal-directed proofs

Another idea introduced by Milner in LCF was the use of
goal-directed or backward proof.

▶ Start with the goal to be proved and apply ‘tactics’ to break
the goal into simpler subgoals, which eventually get solved.

▶ Internally, HOL Light remembers the corresponding proof and
applies the forward rules once the proof is complete.

Even with the use of powerful forward rules, most people find this
goal-directed style more convenient. It is the usual way of proving
results in HOL Light.
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Setting up goals

HOL Light has a simple way (going back to Cambridge LCF) of
setting up a “current goal” and applying tactics.

A new goal can be established using g:

g ‘x >= x - 3 /\ (f(x + 1) + 3 < f(y + 1) + 3 ==> ~(x = y))‘;;

Apply tactics using e (“expand”), e.g. CONJ_TAC that breaks a
conjunctive goal into two conjuncts:

# e CONJ_TAC;;

val it : goalstack = 2 subgoals (2 total)

‘f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y)‘

‘x >= x - 3‘
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Solving subgoals

We can solve the first subgoal with ARITH_TAC (a tactic variant of
ARITH_RULE)

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

‘f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y)‘

and the other with first-order logic noting the fact that < is
irreflexive

# e(MESON_TAC[LT_REFL]);;

0..0..solved at 2

val it : goalstack = No subgoals

We can get at the final theorem now all goals are solved with
top_thm()

# top_thm();;

val it : thm = |- x >= x - 3 /\ (f (x + 1) + 3 < f (y + 1) + 3 ==> ~(x = y))
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Converting rules to tactics

Many forward inference rules have tactic variants, and those that
don’t can often be converted by CONV_TAC, which takes either

▶ A rule that proves a proposition like CONV_RULE

▶ A rule (called a conversion that proves a term equal to
another one)

and applies it in a tactic framework, e.g. CONV_TAC REAL_ARITH.
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The duality between rules and tactics

Most of the (primitive or derived) logical inference that work
forward on theorems like CONJ:

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q

have natural tactic variants (here CONJ_TAC) that apply the rule
‘backwards’.



The duality between rules and tactics

Most of the (primitive or derived) logical inference that work
forward on theorems like CONJ:

Γ ⊢ p ∆ ⊢ q

Γ ∪∆ ⊢ p ∧ q

have natural tactic variants (here CONJ_TAC) that apply the rule
‘backwards’.



Some useful tactics

▶ REWRITE_TAC and ASM_REWRITE_TAC — rewrite the goal with
a list of theorems (including the assumptions).

▶ SIMP_TAC and ASM_SIMP_TAC — more powerful versions of
rewriting using context

▶ MATCH_MP_TAC — use a theorem of the form ⊢ p ⇒ q with
matching to reduce goal q′ to p′

▶ INDUCT_TAC — apply induction on natural numbers

▶ STRIP_TAC — break down a goal moving hypotheses into
assumption list etc.

▶ ASSUME_TAC and MP_TAC — introduce an existing theorem as
a hypothesis

There are also ‘tacticals’ for combining tactics in various ways, e.g.
THEN to apply them one after the other, REPEAT to apply them
repeatedly.
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A simple example (1)

Let’s prove the formula for the sum of the first n natural numbers:

# g ‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘;;

val it : goalstack = 1 subgoal (1 total)

‘!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘

We apply induction and rewrite both goals with the recursive
definition of sums:

# e(INDUCT_TAC THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;

val it : goalstack = 2 subgoals (2 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

‘(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2‘



A simple example (1)

Let’s prove the formula for the sum of the first n natural numbers:

# g ‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘;;

val it : goalstack = 1 subgoal (1 total)

‘!n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘

We apply induction and rewrite both goals with the recursive
definition of sums:

# e(INDUCT_TAC THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG]);;

val it : goalstack = 2 subgoals (2 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

‘(if 1 = 0 then 0 else 0) = (0 * (0 + 1)) DIV 2‘



A simple example (2)
The first goal is trivial

# e ARITH_TAC;;

val it : goalstack = 1 subgoal (1 total)

0 [‘nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘(if 1 <= SUC n then nsum (1..n) (\i. i) + SUC n else nsum (1..n) (\i. i)) =

(SUC n * (SUC n + 1)) DIV 2‘

The other one can be solved by ASM_ARITH_TAC, or we can first
rewrite with the assumptions via ASM_REWRITE_TAC then use
ARITH_TAC again:

# e(ASM_REWRITE_TAC[] THEN ARITH_TAC);;

val it : goalstack = No subgoals

and so

# top_thm();;

val it : thm = |- !n. nsum (1..n) (\i. i) = (n * (n + 1)) DIV 2
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Packaging tactic proofs

Even if they are developed interactively via ‘g’ and ‘e’ steps, it’s
common to package up the tactics into blocks using a prove

function.

let OUR_LEMMA = prove

(‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

I tend to construct the proof in this format in the editor as I work
and just paste it into HOL interactively. Mark Adams has a tool
called Tactician for converting between the forms:

http://www.proof-technologies.com/tactician/

For a video of me proving a slightly larger theorem interactively in
a competition, see

http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html

http://www.proof-technologies.com/tactician/
http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html
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A tour of the library



Some of the basic library files

HOL Light has quite a few library files developing some branches of
mathematics in more detail, e.g.

▶ Library/prime.ml and Library/pocklington.ml —
divisibility properties, prime numbers, certifying the primality
of particular numbers

▶ Library/card.ml — Notions of cardinal arithmetic, just
using injections and surjections to compare sets.

▶ Library/wo.ml — Common Axiom of Choice equivalents like
the wellordering principle and Zorn’s lemma

▶ Library/rstc.ml — Reflexive, symmetric and transitive
closures of binary relations.
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More substantial library components
The following are a few of the extended developments with a
directory of their own:

▶ Boyer_Moore — Boyer-Moore style automation (Petros
Papapanagiotou)

▶ Divstep — bounds proof for optimized binary gcd (Dan
Bernstein)

▶ EC — Common elliptic curves for cryptography
▶ GL — Gödel-Löb modal logic of provability (Cosimo Brogi)
▶ IEEE — IEEE floating-point arithmetic (Charlie Jacobsen)
▶ miz3, Mizarlight — Frameworks for declarative proofs

(Freek Wiedijk)
▶ Permutation — theory of list permutations (Marco Maggesi)
▶ QBF — proving quantified Boolean formulas (Onďrej Kunčar)
▶ Quaternions — theory of quaternions (Marco Maggesi)
▶ RichterHilbertAxiomGeometry — geometry proofs in a

readable format (Bill Richter)
▶ Unity — Chandy-Misra Unity theory (Flemming Andersen)
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Some “great 100 theorems”

http://www.cs.ru.nl/~freek/100/

HOL Light currently has 87 of them; those that are not already
buried in other library files are in the subdirectory 100, e.g.
▶ 100/cayley_hamilton.ml — The Cayley-Hamilton theorem
▶ 100/constructible.ml — Impossibility of angle trisection

or cube construction using geometric constructions
▶ 100/dirichlet.ml — Dirichlet’s theorem on primes in

arithmetic progression
▶ 100/e_is_transcendental.ml — Proof that e is

transcendental (Jesse Bingham)
▶ 100/fourier.ml — Basic results about Fourier series
▶ 100/isoperimetric.ml — The Isoperimetric Theorem
▶ 100/minkowski.ml — Minkowski’s classic geometry of

numbers theorem
▶ 100/pnt.ml — The Prime Number Theorem
▶ 100/polyhedron.ml — Euler’s polyhedron formula

V + F − E = 2
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The Multivariate library

Partly as a result of Flyspeck, HOL Light is particularly strong in
the area of topology, analysis and geometry in Euclidean space Rn.

File Lines Contents

misc.ml 2594 Background stuff
metric .ml 35321 Metric spaces and general topology
vectors.ml 10923 Basic vectors, linear algebra
determinants.ml 4956 Determinant and trace
topology.ml 36653 Topology of euclidean space
convex.ml 18279 Convex sets and functions
paths.ml 29932 Paths, simple connectedness etc.
polytope.ml 8940 Faces, polytopes, polyhedra etc.
degree.ml 9706 Degree theory, retracts etc.
derivatives.ml 5797 Derivatives
clifford.ml 979 Geometric (Clifford) algebra
integration.ml 26193 Integration
measure.ml 32007 Lebesgue measure



The Multivariate library

Partly as a result of Flyspeck, HOL Light is particularly strong in
the area of topology, analysis and geometry in Euclidean space Rn.

File Lines Contents

misc.ml 2594 Background stuff
metric .ml 35321 Metric spaces and general topology
vectors.ml 10923 Basic vectors, linear algebra
determinants.ml 4956 Determinant and trace
topology.ml 36653 Topology of euclidean space
convex.ml 18279 Convex sets and functions
paths.ml 29932 Paths, simple connectedness etc.
polytope.ml 8940 Faces, polytopes, polyhedra etc.
degree.ml 9706 Degree theory, retracts etc.
derivatives.ml 5797 Derivatives
clifford.ml 979 Geometric (Clifford) algebra
integration.ml 26193 Integration
measure.ml 32007 Lebesgue measure



Multivariate theories continued

From this foundation complex analysis is developed and used to
derive convenient theorems for R as well as more topological
results.

File Lines Contents

complexes.ml 2249 Complex numbers
canal.ml 4031 Complex analysis
transcendentals.ml 7590 Real & complex transcendentals
realanalysis.ml 17718 Some analytical stuff on R
moretop.ml 7850 Further topological results
cauchy.ml 24103 Complex line integrals

Credits: JRH, Marco Maggesi, Valentina Bruno, Graziano Gentili,
Gianni Ciolli, Lars Schewe, . . .
It would be desirable to generalize more of the material to general
topological spaces, metric spaces, measure spaces etc.
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Some examples from topology

The Brouwer fixed point theorem:

|- !f:real^N->real^N s.

compact s /\ convex s /\ ~(s = {}) /\

f continuous_on s /\ IMAGE f s SUBSET s

==> ?x. x IN s /\ f x = x

The Borsuk homotopy extension theorem:

|- !f:real^M->real^N g s t u.

closed_in (subtopology euclidean t) s /\

(ANR s /\ ANR t \/ ANR u) /\

f continuous_on t /\ IMAGE f t SUBSET u /\

homotopic_with (\x. T) (s,u) f g

==> ?g’. homotopic_with (\x. T) (t,u) f g’ /\

g’ continuous_on t /\

IMAGE g’ t SUBSET u /\

!x. x IN s ==> g’(x) = g(x)
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Some examples from convexity

The Krein-Milman (Minkowski) theorem

|- !s:real^N->bool.

convex s /\ compact s

==> s = convex hull {x | x extreme_point_of s}

Approximation of convex sets by polytopes w.r.t. Hausdorff
distance:

|- !s:real^N->bool e.

bounded s /\ convex s /\ &0 < e

==> ?p. polytope p /\ s SUBSET p /\ hausdist(p,s) < e
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Some Lipschitz/derivative examples

Kirszbraun’s theorem on extension of Lipschitz functions:

|- !f:real^M->real^N s B.

&0 <= B /\

(!x y. x IN s /\ y IN s ==> norm(f x - f y) <= B * norm(x - y))

==> (?g. (!x y. norm(g x - g y) <= B * norm(x - y)) /\

(!x. x IN s ==> g x = f x))

The Lebesgue differentiation theorem

|- !f:real^1->real^N s.

is_interval s /\ f has_bounded_variation_on s

==> negligible {x | x IN s /\ ~(f differentiable at x)}
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Some examples from measure theory

Steinhaus’s theorem:

|- !s:real^N->bool.

lebesgue_measurable s /\ ~negligible s

==> ?d. &0 < d /\ ball(vec 0,d) SUBSET {x - y | x IN s /\ y IN s}

Luzin’s theorem:

|- !f:real^M->real^N s e.

measurable s /\ f measurable_on s /\ &0 < e

==> ?k. compact k /\ k SUBSET s /\ measure(s DIFF k) < e /\

f continuous_on k
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Some examples from complex analysis

The Little Picard theorem:

|- !f:complex->complex a b.

f holomorphic_on (:complex) /\

~(a = b) /\ IMAGE f (:complex) INTER {a,b} = {}

==> ?c. f = \x. c

The Riemann mapping theorem:

|- !s:complex->bool.

open s /\ simply_connected s <=>

s = {} \/ s = (:complex) \/

?f g. f holomorphic_on s /\

g holomorphic_on ball(Cx(&0),&1) /\

(!z. z IN s ==> f z IN ball(Cx(&0),&1) /\ g(f z) = z) /\

(!z. z IN ball(Cx(&0),&1) ==> g z IN s /\ f(g z) = z)
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Thank you!


